Rahaman, MostafijurChalishajar, DimplekumarGazi, Kamal HossainAlam, SharifulSalahshour, SoheilMondal, Sankar Prasad2025-03-152025-03-15202502504-311010.3390/fractalfract90201022-s2.0-85219169497https://doi.org/10.3390/fractalfract9020102Gazi, Kamal Hossain/0000-0001-7179-984X; Chalishajar, Dimplekumar/0000-0002-6146-5544; Salahshour, Soheil/0000-0003-1390-3551; Mondal, Sankar Prasad/0000-0003-4690-2598This paper presents a contemporary introduction of fractional calculus for Type 2 interval-valued functions. Type 2 interval uncertainty involves interval uncertainty with the goal of more assembled perception with reference to impreciseness. In this paper, a Riemann-Liouville fractional-order integral is constructed in Type 2 interval delineated vague encompassment. The exploration of fractional calculus is continued with the manifestation of Riemann-Liouville and Caputo fractional derivatives in the cited phenomenon. In addition, Type 2 interval Laplace transformation is proposed in this text. Conclusively, a mathematical model regarding economic lot maintenance is analyzed as a conceivable implementation of this theoretical advancement.eninfo:eu-repo/semantics/openAccessRiemann-Liouville Fractional IntegrationRiemann-Liouville Fractional DerivativeCaputo Fractional DerivativeLaplace TransformationFractional Calculus Under UncertaintyEpq ModelType 2 Interval NumberFractional Calculus for Type 2 Interval-Valued FunctionsArticleQ1Q192WOS:001430829600001