Erol, VolkanBugu, SinanOzaydin, FatihAltintas, Azmi AliBilgisayar Mühendisliği / Computer Engineering2024-09-112024-09-112014597814799487412165-0608[WOS-DOI-BELIRLENECEK-172]https://hdl.handle.net/20.500.14517/6156Uyar, Asli/0000-0002-7913-1083Altintas, Azmi/0000-0003-2383-4705Quantum entanglement is one of key concepts in quantum communication engineering. Ordering the quantum systems according to their entanglement measures is a popular problem of the field. For two level (qubit) systems of two particles, state ordering has been studied with respect to well-known entanglement measures such as Concurrence, Negativity and Relative Entropy of Entanglement (REE) [1-5]. In this work, we study the state ordering of the two-qubit systems with respect to Quantum Fisher Information vs. Concurrence. In particular, constructing 1K random states and calculating their Concurrences and Negativities, we obtain the orderings of the states by comparing these results with Quantum Fisher Information values and present our results which are interesting when compared to that of two-level systems.trinfo:eu-repo/semantics/closedAccess[No Keyword Available]AN ANALYSIS OF CONCURRENCE ENTANGLEMENT MEASURE AND QUANTUM FISHER INFORMATION OF QUANTUM COMMUNICATION NETWORKS OF TWO-QUBITSConference Object213317320WOS:000356351400059