Kocaturk, Nur MehpareAkkoc, YunusKig, CenkBayraktar, OznurGozuacik, DevrimKutlu, Ozlem2024-05-252024-05-2520192510928-09871879-072010.1016/j.ejps.2019.04.0112-s2.0-85064667322https://doi.org/10.1016/j.ejps.2019.04.011https://hdl.handle.net/20.500.14517/1546kig, cenk/0000-0002-6318-5001; Kocaturk, Nur/0000-0002-4452-9913; Akkoc, Yunus/0000-0001-5379-6151; bayraktar ekmekcigil, oznur/0000-0002-4824-9943; Devrim, Gozuacik/0000-0001-7739-2346; Kutlu, Ozlem/0000-0002-3769-2536Autophagy is an evolutionarily conserved catabolic mechanism, by which eukaryotic cells recycle or degrades internal constituents through membrane-trafficking pathway. Thus, autophagy provides the cells with a sustainable source of biomolecules and energy for the maintenance of homeostasis under stressful conditions such as tumor microenvironment. Recent findings revealed a close relationship between autophagy and malignant transformation. However, due to the complex dual role of autophagy in tumor survival or cell death, efforts to develop efficient treatment strategies targeting the autophagy/cancer relation have largely been unsuccessful. Here we review the two-faced role of autophagy in cancer as a tumor suppressor or as a pro-oncogenic mechanism. In this sense, we also review the shared regulatory pathways that play a role in autophagy and malignant transformation. Finally, anti-cancer therapeutic agents used as either inhibitors or inducers of autophagy have been discussed.eninfo:eu-repo/semantics/closedAccessAutophagyCancerTherapeutic agentsAutophagy as a molecular target for cancer treatmentConference ObjectQ2Q1134116137WOS:00046808120001030981885