Alp, SinaNajım, Omar Suhaıl Najım2024-08-072024-08-072023https://hdl.handle.net/20.500.14517/5869Seyir Kontrol Sistemi (CCS), otonom araçların temel bir bileşeni olduğu için hayati önem taşır. (CCS), araca daha fazla özerklik kattığı için yüksek öneme sahiptir. (CCS), sürüşü sürücü için daha az stresli ve daha güvenli hale getirmek gibi birçok avantaja sahiptir. Ayrıca, yakıt tüketimini ve motor emisyonlarını en aza indirdiği için çevre için çok önemlidir. Bu çalışmada ileri hareket için (PID) tabanlı (PSO) için tam bir uzunlamasına araç dinamik modeli önerilmiştir. Model, (PID) hız denetleyicisi ve (PSO) yanında aktarma organları alt sistemi, direnç kuvvetleri ve lastik modelinden oluşur. Tam araç modelinin kullanılması, özellikle lastik modeli ve kayma oranı olmak üzere kontrol performansına bir gerçeklik kazandırdı. Farklı hız ve koşullar altında hız kontrol cihazı olan/olmayan araç davranışını açıkladı. (PID) kontrolörü, seyir kontrol sistemini temsil etmek için kullanılıyor. (PID) denetleyicisi, parametrelerinin ayarlanması basit olduğu için yaygın olarak kullanılmaktadır. Bu nedenle, birçok kontrol sistemi, özellikle geri beslemeli kontrolörler, (PID) kontrolörler kullanır. Basit ayarına rağmen çok verimli bir kontrolör olarak kabul edilebilir. (PID) denetleyicili sistem çıkış yanıtı, lineerleştirme yeteneği nedeniyle kararlı ve güvenilir hale gelir. Oransal (KP), İntegral (KI) ve Türev (KD) olan denetleyici parametreleri, iki kez farklı hızlarla ayarlanıyor. Birincisi MATLAB ayarı, ikincisi ise Pratik Sürü Optimizasyonu algoritma tekniğidir. Önerilen modelin genel performansı, istenen her hız için iki ayarlama yöntemiyle değerlendirilmiştir. Deneysel sonuçlar, (PID) tabanlı (PSO)'nun daha iyi performans verdiğini göstermektedir. Küçük bir aşım ve sıfır sabit durum hatasıyla, en erken yükseltme süresi 4 saniye öncedir. Bu denetleyici performansı, tüm denetleyici parametrelerini aynı anda ayarlamak zor olduğundan arzu edilir. (PID) tabanlı (PSO), 13 saniyelik rekabetçi bir sürede istenen hıza ulaşır. Ayrıca optimizasyon kullanılmadığında tespit edilebilecek kararsızlıkları azaltır. Tam model MATLAB/Simulink yazılım ortamında uygulanmaktadır.The Cruise Control System (CCS) is vital because it is a fundamental component of autonomous vehicles. The (CCS) has high significance because it adds more autonomy to the car. The (CCS) has many advantages, such as making driving less stressful and safer for the driver. In addition, it is essential to the environment because it minimizes fuel consumption and engine emissions. A full longitudinal vehicle dynamic model for (PID)-based (PSO) has been proposed in this work for forward motion. The model consists of the drivetrain subsystem, resistance forces, and tire model, besides the (PID) speed controller and (PSO). Using the full vehicle model gave a reality to the control performance, especially the tire model and slip ratio. It explained the vehicle behavior with/without the speed controller under different velocities and conditions. The (PID) controller is being used to represent the cruise control system. The (PID) controller is widely used as its parameters are simple to adjust. Thus, many control systems, especially controllers with feedback, use (PID) controllers. Despite its simple adjustment, it can be considered a very efficient controller. The system output response with the (PID) controller becomes stable and reliable due to its ability to linearization. The controller parameters, which are Proportional (KP), Integral (KI), and Derivative (KD), are being tuned with different speeds twice. The first is MATLAB tuning, and the second is Practical Swarm Optimization algorithm technique. The overall performance of the proposed model has been evaluated with the two tuning methods for each desired speed. The experimental results show that (PID)-based (PSO) gave better performance. With a small overshot, and zero steady-state error, the earliest raise time that 4 seconds earlier. This controller performance is desirable since adjusting all the controller parameters simultaneously is difficult. The (PID)-based (PSO) reaches the desired speed in a competitive time of 13 sec. Furthermore, it reduces the instabilities that can be detected when the optimization is not used. The full model is being implemented in MATLAB/Simulink software environment.enOtomotiv MühendisliğiAutomotive EngineeringFull vehicle dynamic model for pid speed controller basedpractical swarm optamization methodMaster Thesis101https://tez.yok.gov.tr/UlusalTezMerkezi/TezGoster?key=j_Fjwp4JS4mk97Puqti8riDX4vf7pQQ9ivCXBGN2mp7e86emr-gKbiEm82-XrpO2