Ferrara, MassimilianoHeidarkhani, ShapourMoradi, ShahinCaristi, Giuseppe2024-09-112024-09-11202401660-54461660-545410.1007/s00009-024-02669-22-s2.0-85195597989https://doi.org/10.1007/s00009-024-02669-2https://hdl.handle.net/20.500.14517/6157This paper focuses on the existence of solutions and energy estimates for a specific type of periodic boundary value problem. By precisely determining the parameter's localization, we demonstrate the existence of non-zero solutions and infer the presence of multiple solutions for positive parameter values. This analysis necessitates the sublinearity of the nonlinear component at both the origin and infinity. Lastly, we present a multiplicity result along with an example. The proof relies on a local minimum theorem for differentiable functionals.eninfo:eu-repo/semantics/closedAccessquasilinear periodic boundary value problemweak solutionenergy estimatesvariational methodsEnergy Estimates and Existence Results for a Quasilinear Periodic Boundary Value ProblemArticleQ2Q2214WOS:001243600100002