Browsing by Author "Aich, Walid"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation Count: 0Investigation of the effect of model structure type on the thermal performance of phase change materials through molecular dynamics simulation(Elsevier, 2024) Aich, Walid; Salahshour, Soheıl; Sultan, Abbas J.; Ghabra, Amer Ali; Eladeb, Aboulbaba; Kolsi, Lioua; Baghaei, Sh.Using molecular dynamics (MD) simulation, the thermal efficacy of phase change materials (PCMs) in solar energy applications and solar thermal energy storage was evaluated. In order to achieve this objective, an investigation was conducted into the structure's temperature (Temp), velocity, and density profiles, heat flux, thermal conductivity, charge and discharge time, and thermal stability. Three models of tube, shell, and shell-tube were adopted to scrutinize the atomic behavior and thermal performance (TP) of PCMs. The results show that the maximum density of the tube model, shell model, and shell-tube model was 0.042, 0.036, and 0.033 atom/A 3 , respectively. Other numerical results showed that the maximum velocity for the three structures of tube model, shell model, and shell-tube model under the initial Temp of 300 K was 0.0066 & Aring;/fs, 0.0059 & Aring;/fs, and 0.0054 & Aring;/fs, respectively. The structure in the tube model manifested more optimal atomic behavior compared to other models. The TP of simulated structures revealed that the heat flux of the samples reached 5.69, 4.85, and 4.15 W/m 2 , respectively. Finally, the thermal conductivity of the structures approached 1.35, 1.32, and 1.31 W/m.K, respectively. The results suggested that the tube model had the most thermal stability and showed the optimal thermal behavior in the simulation. The findings of this study, particularly the optimal atomic behavior and thermal stability of the tube model, can be useful in designing and optimizing PCMs for solar energy applications. In general, this research had the potential to significantly advance the field of solar energy system efficiency and cost-effectiveness.Article Citation Count: 0Numerical investigation of the heat flux frequency effect on the doxorubicin absorption by Bio MOF11 carrier: A molecular dynamics approach(Elsevier, 2024) Ben Said, Lotfi; Salahshour, Soheıl; Jasim, Dheyaa J.; Aljaafari, Haydar A. S.; Ayadi, Badreddine; Aich, Walid; Eftekhari, S. AliThe present study investigated the effect of heat flux frequency on doxorubicin adsorption by bio MOF11 biocarrier using molecular dynamics simulation. This simulation examined the effect of several heat flux frequencies (0.001, 0.002, 0.005, and 0.010 1/fs) on the quantity of drug particles absorbed, mean square displacement (MSD), diffusion coefficient, and interaction energy. The present outputs of simulations predicted the structural stability of the modeled MOF-drug system in 300 K. Also, simulation outputs predicted by frequency optimization, the adsorption of target drug inside MOF11 maximized, and efficiency of this sample in actual clinical applications, such as drug delivery process increased. Numerically, the optimum value of frequency was estimated to be 0.005 1/fs. Using this heat setting, the interaction energy between MOF 11 and the doxorubicin drug increased to -929.05 kcal/mol, and the number of penetrated drug particles inside MOF11 converged to 207 atoms. The results reveal that the MSD parameter reached 64.82 angstrom 2 after 100000 -time steps. By increasing frequency to 0.005 fs-1, this increased to 78.05 angstrom 2. By increasing MSD parameter, the drug diffusion process effectively occurred, and the diffusion coefficient increased from 67.29 to 82.47 nm2/ns. It is expected that the findings of present investigation guide the design of more efficient drug delivery platforms, enhance drugcarrier interactions, improve manufacturing processes, and aid in developing novel nanomaterials with enhanced adsorption properties for various applications.