Browsing by Author "Ayadi, Badreddine"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation Count: 0Changes in mechanical properties of copper-silver matrix welded by the iron blade by increasing initial pressure: A molecular dynamics approach(Elsevier, 2024) Ayadi, Badreddine; Salahshour, Soheıl; Sajadi, S. Mohammad; Nasajpour-Esfahani, Navid; Salahshour, Soheil; Esmaeili, Shadi; Elhag, Ahmed Faisal AhmedAtomic investigation of many common phenomena can be included as interesting achievements. Using these achievements makes it possible to design promising structures for various actual applications. The current research describes the mechanical performance of Ag and Cu samples after welding at various initial pressures. For this purpose, the Molecular Dynamics (MD) approach is used via the LAMMPS package. Technically, MD simulations are done in 2 main steps. Firstly, the atomic stability of welded Ag-Cu samples is described at various initial conditions (initial pressure). Then, tension test settings are implemented in equilibrated systems. The MD outputs indicate that the physical stability of the welded samples was altered by changing the initial pressure between 1 and 10 bar. Simulation results predict that the mechanical resistance of atomic samples decreases by enlarging the initial pressure. Numerically, the ultimate strength of the Ag-Cu matrixes decreases from 1.424 MPa to 1.241 MPa by increasing the initial pressure from 1 bar to 10 bar, respectively. This mechanical performance arises from atomic disorder created inside samples. So, it is expected that initial condition changes affect the atomic evolution of welded metallic samples, and this phenomenon should be considered in the design of mechanical structures in industrial cases.Article Citation Count: 0Numerical investigation of the heat flux frequency effect on the doxorubicin absorption by Bio MOF11 carrier: A molecular dynamics approach(Elsevier, 2024) Ben Said, Lotfi; Salahshour, Soheıl; Jasim, Dheyaa J.; Aljaafari, Haydar A. S.; Ayadi, Badreddine; Aich, Walid; Eftekhari, S. AliThe present study investigated the effect of heat flux frequency on doxorubicin adsorption by bio MOF11 biocarrier using molecular dynamics simulation. This simulation examined the effect of several heat flux frequencies (0.001, 0.002, 0.005, and 0.010 1/fs) on the quantity of drug particles absorbed, mean square displacement (MSD), diffusion coefficient, and interaction energy. The present outputs of simulations predicted the structural stability of the modeled MOF-drug system in 300 K. Also, simulation outputs predicted by frequency optimization, the adsorption of target drug inside MOF11 maximized, and efficiency of this sample in actual clinical applications, such as drug delivery process increased. Numerically, the optimum value of frequency was estimated to be 0.005 1/fs. Using this heat setting, the interaction energy between MOF 11 and the doxorubicin drug increased to -929.05 kcal/mol, and the number of penetrated drug particles inside MOF11 converged to 207 atoms. The results reveal that the MSD parameter reached 64.82 angstrom 2 after 100000 -time steps. By increasing frequency to 0.005 fs-1, this increased to 78.05 angstrom 2. By increasing MSD parameter, the drug diffusion process effectively occurred, and the diffusion coefficient increased from 67.29 to 82.47 nm2/ns. It is expected that the findings of present investigation guide the design of more efficient drug delivery platforms, enhance drugcarrier interactions, improve manufacturing processes, and aid in developing novel nanomaterials with enhanced adsorption properties for various applications.