Browsing by Author "Mirian, Mina"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation Count: 0Intersecting pathways: The role of hybrid E/M cells and circulating tumor cells in cancer metastasis and drug resistance(Churchill Livingstone, 2024) Hariri, Amirali; Khosravı, Arezoo; Khosravi, Arezoo; Zarepour, Atefeh; Iravani, Siavash; Zarrabi, Ali; Genetik ve Biyomühendislik / Genetic and Bio-EngineeringCancer metastasis and therapy resistance are intricately linked with the dynamics of Epithelial-Mesenchymal Transition (EMT) and Circulating Tumor Cells (CTCs). EMT hybrid cells, characterized by a blend of epithelial and mesenchymal traits, have emerged as pivotal in metastasis and demonstrate remarkable plasticity, enabling transitions across cellular states crucial for intravasation, survival in circulation, and extravasation at distal sites. Concurrently, CTCs, which are detached from primary tumors and travel through the bloodstream, are crucial as potential biomarkers for cancer prognosis and therapeutic response. There is a significant interplay between EMT hybrid cells and CTCs, revealing a complex, bidirectional relationship that significantly influences metastatic progression and has a critical role in cancer drug resistance. This resistance is further influenced by the tumor microenvironment, with factors such as tumor-associated macrophages, cancer-associated fibroblasts, and hypoxic conditions driving EMT and contributing to therapeutic resistance. It is important to understand the molecular mechanisms of EMT, characteristics of EMT hybrid cells and CTCs, and their roles in both metastasis and drug resistance. This comprehensive understanding sheds light on the complexities of cancer metastasis and opens avenues for novel diagnostic approaches and targeted therapies and has significant advancements in combating cancer metastasis and overcoming drug resistance.Review Citation Count: 4Targeting vimentin: a multifaceted approach to combatting cancer metastasis and drug resistance(Springer, 2023) Tabatabaee, Aliye; Khosravı, Arezoo; Farhang, Armin; Hariri, Amirali; Khosravi, Arezoo; Zarrabi, Ali; Mirian, Mina; Genetik ve Biyomühendislik / Genetic and Bio-EngineeringThis comprehensive review explores vimentin as a pivotal therapeutic target in cancer treatment, with a primary focus on mitigating metastasis and overcoming drug resistance. Vimentin, a key player in cancer progression, is intricately involved in processes such as epithelial-to-mesenchymal transition (EMT) and resistance mechanisms to standard cancer therapies. The review delves into diverse vimentin inhibition strategies. Precision tools, including antibodies and nanobodies, selectively neutralize vimentin's pro-tumorigenic effects. DNA and RNA aptamers disrupt vimentin-associated signaling pathways through their adaptable binding properties. Innovative approaches, such as vimentin-targeted vaccines and microRNAs (miRNAs), harness the immune system and post-transcriptional regulation to combat vimentin-expressing cancer cells. By dissecting vimentin inhibition strategies across these categories, this review provides a comprehensive overview of anti-vimentin therapeutics in cancer treatment. It underscores the growing recognition of vimentin as a pivotal therapeutic target in cancer and presents a diverse array of inhibitors, including antibodies, nanobodies, DNA and RNA aptamers, vaccines, and miRNAs. These multifaceted approaches hold substantial promise for tackling metastasis and overcoming drug resistance, collectively presenting new avenues for enhanced cancer therapy.