Browsing by Author "Rasheed, Rassol H."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation Count: 0The nano-pumping process of C20 molecules from carbon nanotube at the different external electric fields and atomic defects: A molecular dynamics approach(Elsevier Science Sa, 2024) Niu, Haichun; Salahshour, Soheıl; Sajadi, S. Mohammad; Jasim, Dheyaa J.; Salahshour, Soheil; Nasajpour-Esfahani, Navid; Sabetvand, RozbehToday, carbon nanotubes are involved in many medical types of research, such as biosensors and drug delivery. These nanotubes do not pose a problem for the body regarding toxicity to body cells and triggering the immune system. Nanotubes have also been proven to increase solubility and the possibility of targeted drug delivery. This study used molecular dynamics simulation to examine the nano-pumping process of the C20 molecule in carbon nanotubes at the different electric fields and atomic defects. The process of C20 molecule nano-pumping was examined by examining the changes in kinetic energy, potential energy, entropy, stress, temperature, and in-ternal energy changes. In the following, the stress on the atomic structure was calculated. For this purpose, constant electric fields with the magnitudes of 0.01, 0.02, 0.03, 0.05, and 0.1 V/angstrom are used for the atomic structure. The results show that the nano-pumping time of the C20 molecule in the carbon nanotubes increases by increasing the electric field magnitude. The results also revealed that the kinetic energy in the structure decreased by increasing the electric fields, and the potential energy increased. As the potential energy increased in the atomic structure, the stability increased. Therefore, it is expected that the C20 molecule nano-pumping time will increase. The following examined the effect of atomic defects in an electric field with a magnitude of 0.01 V/angstrom. For this purpose, the atomic defects with magnitudes of 1 %, 2 %, 3 %, and 4 % were used for carbon nanotubes. The results revealed that increasing the atomic defects increased the C20 molecule nano-pumping time. Furthermore, the stress on the structure increased by increasing the atomic defects.Article Citation Count: 1Thermal performance of forced convection of water- NEPCM nanofluid over a semi-cylinder heat source(Elsevier, 2024) Wang, Xiaoming; Salahshour, Soheıl; Keivani, Babak; Jasim, Dheyaa J.; Sultan, Abbas J.; Hamedi, Sajad; Toghraie, Davood1) Background: Phase change materials (PCMs) have been used statically, which has caused the use of these materials to face challenges. Encapsulating PCMs and combining them with the base fluid can significantly solve the problem of using PCMs in BTM systems. In the present study, based on computational fluid dynamics, forced convection heat transfer of nano -encapsulated phase change materials (NEPCM) in a BTM system are simulated. The main aim of the present research is to reduce the temperature at the surface of the hot cylinder. 2) Methods: In this research, we simulated lithium battery thermal management systems in both steady and transient states. The effects of using NEPCM particles to water were investigated. Modeling is implemented using the finite volume method and the PIMPLE and SIMPLE algorithms in OpenFoam. Furthermore, the effects of battery heat flux, Reynolds number, and the presence of nanoparticles (NPs) were analyzed. We intend to evaluate the optimal state of the system by studying the mentioned parameters. 3) Significant Findings: Our study shows that adding 3.5% NEPCM to water can reduce the length of the vortex by 22% and in unsteady -state simulation, it is observed that the presence of NEPCM particles in water reduces battery temperature up to 0.66 K.