Interference Mitigation and Collision Avoidance of Dynamic Uavbss Network Via Mobility Control: a Game Theoretic Approach

dc.authoridTHABET, OMAR ALI THABET/0000-0003-0149-7437
dc.authoridKivanc Tureli, Didem/0000-0001-6835-2940
dc.authorwosidTureli, Didem/KFS-7253-2024
dc.authorwosidTHABET, OMAR/MEQ-2187-2025
dc.contributor.authorAli Thabet, Omar
dc.contributor.authorTureli, Didem Kivanc
dc.contributor.authorTureli, Ufuk
dc.date.accessioned2025-01-15T21:48:28Z
dc.date.available2025-01-15T21:48:28Z
dc.date.issued2025
dc.departmentOkan Universityen_US
dc.department-temp[Ali Thabet, Omar; Tureli, Ufuk] Yildiz Tech Univ, Elect & Commun Engn Dept, TR-34220 Istanbul, Turkiye; [Tureli, Didem Kivanc] Istanbul Okan Univ, Mechatron Engn Dept, TR-34959 Istanbul, Turkiyeen_US
dc.descriptionTHABET, OMAR ALI THABET/0000-0003-0149-7437; Kivanc Tureli, Didem/0000-0001-6835-2940en_US
dc.description.abstractMobility control of Unmanned Aerial Vehicle Base Stations (UAVBSs) can avoid collision and improve the power efficiency and coverage of the wireless network. In this work, UAVBS mobility control is formulated as an exact potential game. Three algorithms are proposed to solve this problem under different connectivity and complexity scenarios. In the first scenario on board computation and power may be limited due to other functions. Under this scenario, the UAVBSs-Better Direction Control (UAVBSs-BDC) algorithm works iteratively based only on the UAV utility function with linear time to directly optimize the action selection based on the UAVBS's utility. The Utility-Driven Partial Synchronous Learning (UDPSL) algorithm speeds up convergence by using a learning algorithm. This algorithm is seen to increase the incidence of collision when UAVBSs are located close together and require an additional collision avoidance mechanism. The Neighbor Responsive Adaptive-Partial Synchronous Learning (NRA-PSL) algorithm controls the UAVBS's trajectory via conditioned response to its neighbor UAVBSs to select the action that guides the UAVBS towards a better direction. This algorithm requires additional information about the interference posed by neighbor UAVBS and their location in the cell, which allows it to design a better trajectory which converges faster to the optimal placement of UAVBSs in the cell.en_US
dc.description.sponsorshipYildiz Technical University Scientific Research Projects Office (YTU BAP) [FBA-2024-6098]en_US
dc.description.sponsorshipThis work was supported in part by the Yildiz Technical University Scientific Research Projects Office (YTU BAP) under Project FBA-2024-6098.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citationcount0
dc.identifier.doi10.1109/ACCESS.2024.3515006
dc.identifier.endpage1444en_US
dc.identifier.issn2169-3536
dc.identifier.scopus2-s2.0-85212081665
dc.identifier.scopusqualityQ1
dc.identifier.startpage1422en_US
dc.identifier.urihttps://doi.org/10.1109/ACCESS.2024.3515006
dc.identifier.volume13en_US
dc.identifier.wosWOS:001389548300030
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherIeee-inst Electrical Electronics Engineers incen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.scopus.citedbyCount0
dc.subjectAutonomous Aerial Vehiclesen_US
dc.subjectTrajectoryen_US
dc.subjectGamesen_US
dc.subjectInterferenceen_US
dc.subjectHeuristic Algorithmsen_US
dc.subjectCollision Avoidanceen_US
dc.subjectRelaysen_US
dc.subjectPrediction Algorithmsen_US
dc.subjectUplinken_US
dc.subjectTelecommunicationsen_US
dc.subjectInterference Mitigationen_US
dc.subjectMobility Controlen_US
dc.subjectPotential Gameen_US
dc.subjectUavbss Networken_US
dc.titleInterference Mitigation and Collision Avoidance of Dynamic Uavbss Network Via Mobility Control: a Game Theoretic Approachen_US
dc.typeArticleen_US
dc.wos.citedbyCount0
dspace.entity.typePublication

Files