Using adaptive neuro-fuzzy inference system for predicting thermal conductivity of silica -MWCNT-alumina/water hybrid nanofluid

dc.authoridEftekhari, SeyedAli/0000-0002-9730-4232
dc.authoridJasim, Dheyaa Jumaah/0000-0001-7259-3392
dc.authoridtoghraie, davood/0000-0003-3344-8920
dc.authorscopusid58141407100
dc.authorscopusid57739925100
dc.authorscopusid22136195900
dc.authorscopusid57225906716
dc.authorscopusid57222062476
dc.authorscopusid23028598900
dc.authorscopusid36807246100
dc.authorwosidEftekhari, SeyedAli/AAG-3342-2019
dc.authorwosidJasim, Dheyaa Jumaah/GPS-5013-2022
dc.contributor.authorZhou, Yuan
dc.contributor.authorSalahshour, Soheıl
dc.contributor.authorSajadi, S. Mohammad
dc.contributor.authorJasim, Dheyaa J.
dc.contributor.authorNasajpour-Esfahani, Navid
dc.contributor.authorSalahshour, Soheil
dc.contributor.authorEftekhari, S. Ali
dc.date.accessioned2024-05-25T11:38:55Z
dc.date.available2024-05-25T11:38:55Z
dc.date.issued2023
dc.departmentOkan Universityen_US
dc.department-temp[Zhou, Yuan] Shanghai Maritime Univ, Sch Logist Engn, Shanghai 201306, Peoples R China; [Derakhshanfard, Amir Hossein] Islamic Azad Univ, Dept Mech, Hamedan Branch, Hamadan, Iran; [Sajadi, S. Mohammad] Cihan Univ Erbil, Dept Nutr, Erbil, Kurdistan, Iraq; [Jasim, Dheyaa J.] Al Amarah Univ Coll, Dept Petr Engn, Amarah, Iraq; [Nasajpour-Esfahani, Navid] Georgia Inst Technol, Dept Mat Sci & Engn, Atlanta, GA 30332 USA; [Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Dept Genet & Bioengn, Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Lebanese American Univ, Dept Comp Sci & Math, Beirut, Lebanon; [Toghraie, D.; Eftekhari, S. Ali] Islamic Azad Univ, Dept Mech Engn, Khomeinishahr Branch, Khomeinishahr, Iranen_US
dc.descriptionEftekhari, SeyedAli/0000-0002-9730-4232; Jasim, Dheyaa Jumaah/0000-0001-7259-3392; toghraie, davood/0000-0003-3344-8920en_US
dc.description.abstractIn this study, the thermal conductivity (knf) of Silicon Oxide-MWCNT-Alumina/Water hybrid nanofluid (HNF) is predicted versus solid volume fraction (SVF) and temperature. For this reason, various combinations of SVF and temperature are considered from SVF= 0.1-0.5% and 20-60 (degrees C) respectively. Then, an adaptive neuro-fuzzy inference system (ANFIS) has been effectively used to model the knf of HNF as one of the effective machine learning techniques. Various shapes of membership functions are considered and the generalized bell shape membership function showed to have acceptable accuracy for knf prediction using an ANFIS-based model. Moreover, the outcomes reveal that the effect of SVF is higher than temperature influence on the knf of HNF. Specifically, when the SVF is increased from 0.1% to 0.5%, there is an approximate 25% increase in knf. Conversely, an increase in temperature leads to a smaller ratio of knf increment. When the temperature rises from 20 degrees to 60 degrees C, knf only increases by less than 10%. The highest error value is found at phi = 0.2% and T = 60 degrees C, amounting to 0.01128 W/mK.en_US
dc.identifier.citation1
dc.identifier.doi10.1016/j.mtcomm.2023.107612
dc.identifier.issn2352-4928
dc.identifier.scopus2-s2.0-85177617658
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1016/j.mtcomm.2023.107612
dc.identifier.urihttps://hdl.handle.net/20.500.14517/1306
dc.identifier.volume37en_US
dc.identifier.wosWOS:001123391000001
dc.identifier.wosqualityQ2
dc.institutionauthorSalahshour S.
dc.language.isoen
dc.publisherElsevieren_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAdaptive neuro-fuzzyen_US
dc.subjectThermal conductivityen_US
dc.subjectSilicon oxideen_US
dc.subjectMWCNT -alumina-wateren_US
dc.subjectHybrid nanofluiden_US
dc.titleUsing adaptive neuro-fuzzy inference system for predicting thermal conductivity of silica -MWCNT-alumina/water hybrid nanofluiden_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf5ba517c-75fb-4260-af62-01c5f5912f3d
relation.isAuthorOfPublication.latestForDiscoveryf5ba517c-75fb-4260-af62-01c5f5912f3d

Files