Accurate Prediction of the Rheological Behavior of Mwcnt-Al2O3/ Water-Ethylene Glycol Nanofluid With Metaheuristic-Optimized Machine Learning Models

dc.contributor.author Ru, Yi
dc.contributor.author Ali, Ali B. M.
dc.contributor.author Qader, Karwan Hussein
dc.contributor.author Abdulaali, Hanaa Kadhim
dc.contributor.author Jhala, Ramdevsinh
dc.contributor.author Ismailov, Saidjon
dc.contributor.author Mokhtarian, Ali
dc.date.accessioned 2025-02-17T18:49:52Z
dc.date.available 2025-02-17T18:49:52Z
dc.date.issued 2025
dc.description.abstract The accurate prediction of the rheological properties of nanofluids is critical for optimizing their application in various industrial systems. This study focuses on the dynamic viscosity prediction of MWCNT-Al2O3/water (80 %) and ethylene glycol (20 %) hybrid nanofluid using machine learning approaches. A multilayer perceptron neural network (MLPNN) was employed for viscosity prediction, and its structural and training parameters, including the number of hidden layers and neurons, learning rate, training technique, and transfer functions, were optimized using three metaheuristic algorithms: Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Marine Predators Algorithm (MPA). A dataset containing viscosity measurements influenced by nanoparticle volume fraction (VF), temperature (T), and shear rate (SR) was utilized. The optimization algorithms were evaluated over 10 and 20 runs for single-hidden-layer (1HL) and double-hidden-layer (2HL) MLPNNs, respectively. For the 1HL-MLPNN models, all three algorithms achieved nearly identical performance with high predictive accuracy (R = 0.99992, MSE = 0.00176). In contrast, for 2HL-MLPNN models, PSO outperformed MPA and GA with R = 0.99995 and MSE = 0.00105, followed by MPA (R = 0.99995, MSE = 0.00123) and GA (R = 0.99992, MSE = 0.00160). Also, sensitivity analysis revealed the VF as the most significant input parameter affecting viscosity predictions, followed by shear rate and temperature. These findings demonstrate the potential of metaheuristic-optimized MLPNNs for high-accuracy prediction of hybrid nanofluid rheological properties, facilitating improved design and application in thermal management systems. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1016/j.ijthermalsci.2025.109691
dc.identifier.issn 1290-0729
dc.identifier.issn 1778-4166
dc.identifier.scopus 2-s2.0-85214568876
dc.identifier.uri https://doi.org/10.1016/j.ijthermalsci.2025.109691
dc.language.iso en en_US
dc.publisher Elsevier France-Editions Scientifiques Medicales Elsevier en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Hybrid Nanofluid en_US
dc.subject Ann en_US
dc.subject Genetic Algorithm en_US
dc.subject Particle Swarm Optimization en_US
dc.subject Marine Predators' Algorithm en_US
dc.subject Machine Learning en_US
dc.title Accurate Prediction of the Rheological Behavior of Mwcnt-Al2O3/ Water-Ethylene Glycol Nanofluid With Metaheuristic-Optimized Machine Learning Models en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.wosid Mokhtarian, Ali/Aan-5953-2021
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Okan University en_US
gdc.description.departmenttemp [Ru, Yi] Univ Toronto, Dept Mech & Ind Engn, 5 Kings Coll Rd, Toronto, ON M5S 3G8, Canada; [Ali, Ali B. M.] Univ Warith Al Anbiyaa, Coll Engn, Air Conditioning Engn Dept, Karbala, Iraq; [Qader, Karwan Hussein] Cihan Univ Erbil, Dept Comp Sci, Erbil, Kurdistan Regio, Iraq; [Abdulaali, Hanaa Kadhim] Univ Technol Iraq, Dept Chem Engn, Baghdad, Iraq; [Jhala, Ramdevsinh] Marwadi Univ, Fac Engn & Technol, Res Ctr, Dept Mech Engn, Rajkot 360003, Gujarat, India; [Ismailov, Saidjon] Tashkent State Pedag Univ, Dept Chem & Its Teaching Methods, Tashkent, Uzbekistan; [Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Piri Reis Univ, Fac Sci & Letters, Istanbul, Turkiye; [Mokhtarian, Ali] Islamic Azad Univ, Dept Mech Engn, Khomeinishahr Branch, Khomeinishahr, Iran en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.volume 211 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.wos WOS:001416986200001
gdc.index.type WoS
gdc.index.type Scopus
gdc.scopus.citedcount 0

Files