A novel insight into the design of perforated-finned heat sinks based on a hybrid procedure: Computational fluid dynamics, machine learning, multi-objective optimization, and multi-criteria decision-making

dc.authoridAbdollahi, Seyyed Amirreza/0000-0002-9576-7989
dc.authoridKolsi, Lioua/0000-0003-4368-7458
dc.authoridAhmed, Mohsen/0000-0001-9305-5040
dc.authorscopusid57936010800
dc.authorscopusid58119833400
dc.authorscopusid56999952800
dc.authorscopusid57225906716
dc.authorscopusid57404280300
dc.authorscopusid58805751100
dc.authorscopusid16309887800
dc.authorwosidAbdollahi, Seyyed Amirreza/JDW-1011-2023
dc.authorwosidAICH, WALID/AAQ-1695-2021
dc.authorwosidBen Said, Lotfi/J-6023-2019
dc.authorwosidJasim, Dheyaa/GPS-5013-2022
dc.authorwosidKolsi, Lioua/F-9423-2016
dc.authorwosidAhmed, Mohsen/ABF-9207-2021
dc.contributor.authorAbdollahi, Seyyed Amirreza
dc.contributor.authorAlenezi, Anwur
dc.contributor.authorAlizadeh, As 'ad
dc.contributor.authorJasim, Dheyaa J.
dc.contributor.authorAhmed, Mohsen
dc.contributor.authorFezaa, Laith H. A.
dc.contributor.authorMaleki, Hamid
dc.date.accessioned2024-05-25T12:18:51Z
dc.date.available2024-05-25T12:18:51Z
dc.date.issued2024
dc.departmentOkan Universityen_US
dc.department-temp[Abdollahi, Seyyed Amirreza] Univ Tabriz, Fac Mech Engn, Tabriz, Iran; [Alenezi, Anwur] Kuwait Inst Sci Res, Water Res Ctr, POB 24885, Safat 13109, Kuwait; [Alizadeh, As 'ad] Cihan Univ Erbil, Coll Engn, Dept Civil Engn, Erbil, Iraq; [Alizadeh, As 'ad] Istanbul Okan Univ, Fac Engn & Nat Sci, Dept Elect & Elect Engn, Istanbul, Turkiye; [Jasim, Dheyaa J.] Al Amarah Univ Coll, Dept Petr Engn, Maysan, Iraq; [Ahmed, Mohsen] Imam Abdulrahman Bin Faisal Univ, Dept Phys, POB 1982, Dammam 31441, Eastern Provinc, Saudi Arabia; [Fezaa, Laith H. A.] Al Zahrawi Univ Coll, Dept Opt Tech, Karbala, Iraq; [Aich, Walid; Ben Said, Lotfi; Kolsi, Lioua] Univ Hail, Coll Engn, Dept Mech Engn, Hail 81451, Saudi Arabia; [Aich, Walid; Kolsi, Lioua] Univ Monastir, Lab Meteorol & Energy Syst, Monastir 5000, Tunisia; [Ben Said, Lotfi] Univ Sfax, Natl Engn Sch Sfax, Lab Electrochem & Environm LEE, ENIS, Sfax 5080, Tunisia; [Maleki, Hamid] Isfahan Univ Technol, Dept Mech Engn, Esfahan, Iranen_US
dc.descriptionAbdollahi, Seyyed Amirreza/0000-0002-9576-7989; Kolsi, Lioua/0000-0003-4368-7458; Ahmed, Mohsen/0000-0001-9305-5040en_US
dc.description.abstractThe optimal design of heat sinks presents a challenge for engineers. Using longitudinal perforations is an innovative technique employed in the design of parallel finned heat sinks that can be applied to various equipment. This technique leads to the simultaneous improvement of the heat transfer rate, pressure drop, and weight of heat sinks. The size (phi) and shape of the perforations alongside the Reynolds number are considered design variables. The results obtained from machine learning showed that the combinatorial algorithm is more reliable in modeling various objectives compared to the GMDH neural networks. The Pareto fronts generated by the NSGA-II algorithm indicated that >75% of the optimal points in the perforated-finned heat sinks (PFHSs) with square perforations had a phi >= 0 .6. The reason for this superiority is the geometric compatibility between the square perforations and rectangular fins. This compatibility enables the possibility of enlarging the perforations, resulting in improvements in essential parameters like heat dissipation, drag force, and overall heat sink volume. Various scenarios for weighting objectives in the multi-criteria decision-making (MCDM) process revealed that square-based PFHSs with Reynolds numbers around 39,900 in a wide range of perforation sizes could be applied as optimal design in real-world applications.en_US
dc.description.sponsorshipUniversity of Hail, UOH, (RG-23 008); University of Hail, UOHen_US
dc.description.sponsorshipScientific Research Deanship at University of Ha'il, Saudi Arabia [RG-23 008]en_US
dc.description.sponsorship<B>Acknowledgement</B> This research has been funded by Scientific Research Deanship at University of Ha'il, Saudi Arabia through project number RG-23 008.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citation2
dc.identifier.doi10.1016/j.icheatmasstransfer.2024.107535
dc.identifier.issn0735-1933
dc.identifier.issn1879-0178
dc.identifier.scopus2-s2.0-85192145094
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.icheatmasstransfer.2024.107535
dc.identifier.volume155en_US
dc.identifier.wosWOS:001240206100001
dc.identifier.wosqualityQ1
dc.language.isoen
dc.publisherPergamon-elsevier Science Ltden_US
dc.relation.ispartofInternational Communications in Heat and Mass Transferen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFinned heat sinken_US
dc.subjectPerforated finsen_US
dc.subjectComputational fluid dynamicsen_US
dc.subjectMachine learningen_US
dc.subjectMulti-objective optimizationen_US
dc.subjectMulti-criteria decision-makingen_US
dc.titleA novel insight into the design of perforated-finned heat sinks based on a hybrid procedure: Computational fluid dynamics, machine learning, multi-objective optimization, and multi-criteria decision-makingen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files