A Comparison of MLR and Three Different Artificial Neural Networks Techniques for Daily Mean Flow Prediction

dc.contributor.authorBirinci, V.
dc.date.accessioned2024-10-15T20:19:20Z
dc.date.available2024-10-15T20:19:20Z
dc.date.issued2009
dc.departmentOkan Universityen_US
dc.department-temp[Birinci, V.] Okan Univ, Fac Engn, Dept Civil Engn, Istanbul, Turkeyen_US
dc.description.abstractPrediction for hydrologic events has always been an important issue for optimizing and planning the whole system. In this study, a conventional multivariate linear regression method and three different ANN (Artificial Neural Networks) techniques (Feed Forward Back Propagation, Generalized Regression and Radial Basis Function) were used to predict and model daily mean flow of Anamur River. Because of the climate change, last 5234 days' data between the years 1989 and 2003 were processed and those three techniques of ANN and the conventional method MLR (multivariate linear regression) were compared to each other. The best results were obtained with FFBP algorithm.en_US
dc.description.woscitationindexConference Proceedings Citation Index - Science
dc.identifier.citation0
dc.identifier.doi[WOS-DOI-BELIRLENECEK-290]
dc.identifier.endpage+en_US
dc.identifier.isbn9789604741427
dc.identifier.startpage61en_US
dc.identifier.urihttps://hdl.handle.net/20.500.14517/6439
dc.identifier.wosWOS:000276620800009
dc.institutionauthorBirinci, V.
dc.language.isoen
dc.publisherWorld Scientific and Engineering Acad and Socen_US
dc.relation.ispartof7th WSEAS International Conference on Environment, Ecosystems and Development -- DEC 14-16, 2009 -- Puerto de la Cruz, SPAINen_US
dc.relation.ispartofseriesEnergy and Environmental Engineering Series
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectANNen_US
dc.subjectMLRen_US
dc.subjectdaily flowen_US
dc.subjectGRNNen_US
dc.subjectFFBPNNen_US
dc.subjectRBFNNen_US
dc.titleA Comparison of MLR and Three Different Artificial Neural Networks Techniques for Daily Mean Flow Predictionen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files