On the effect of synthetic morphological feature vectors on hyperspectral image classification performance
dc.authorid | Aptoula, Erchan/0000-0001-6168-2883 | |
dc.authorid | Yanikoglu, Berrin/0000-0001-7403-7592 | |
dc.authorid | Davari, Amirabbas/0000-0001-6672-283X | |
dc.authorwosid | Aptoula, Erchan/AAI-1070-2020 | |
dc.authorwosid | Yanikoglu, Berrin/AAE-4843-2022 | |
dc.contributor.author | Davari, Amir Abbas | |
dc.contributor.author | Aptoula, Erchan | |
dc.contributor.author | Yanikoglu, Berrin | |
dc.date.accessioned | 2024-10-15T20:18:35Z | |
dc.date.available | 2024-10-15T20:18:35Z | |
dc.date.issued | 2015 | |
dc.department | Okan University | en_US |
dc.department-temp | [Davari, Amir Abbas; Yanikoglu, Berrin] Sabanci Univ, Dept Comp Sci & Engn, Istanbul, Turkey; [Aptoula, Erchan] Okan Univ, Dept Comp Engn, Istanbul, Turkey | en_US |
dc.description | Aptoula, Erchan/0000-0001-6168-2883; Yanikoglu, Berrin/0000-0001-7403-7592; Davari, Amirabbas/0000-0001-6672-283X | en_US |
dc.description.abstract | This paper studies the effect of synthetic feature vectors on the classification performance of hyperspectral remote sensing images. As feature vectors, it has been chosen to employ morphological attribute profiles, that have proven themselves in this field. At this early stage of our work, the relatively simple Bootstrapping algorithm has been used for synthetic feature vector generation. Based on experiments conducted on multiple hyperspectral datasets, it has been observed that synthetic feature vectors contribute considerably to classification performance in the case of limited training dataset sizes. | en_US |
dc.description.woscitationindex | Conference Proceedings Citation Index - Science | |
dc.identifier.citation | 4 | |
dc.identifier.doi | [WOS-DOI-BELIRLENECEK-152] | |
dc.identifier.endpage | 656 | en_US |
dc.identifier.isbn | 9781467373869 | |
dc.identifier.issn | 2165-0608 | |
dc.identifier.startpage | 653 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.14517/6392 | |
dc.identifier.wos | WOS:000380500900142 | |
dc.language.iso | en | |
dc.publisher | Ieee | en_US |
dc.relation.ispartof | 23nd Signal Processing and Communications Applications Conference (SIU) -- MAY 16-19, 2015 -- Inonu Univ, Malatya, TURKEY | en_US |
dc.relation.ispartofseries | Signal Processing and Communications Applications Conference | |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | remote sensing | en_US |
dc.subject | hyperspectral image | en_US |
dc.subject | extended morphological attribute profile | en_US |
dc.subject | bootstrap | en_US |
dc.subject | resampling | en_US |
dc.subject | classification | en_US |
dc.title | On the effect of synthetic morphological feature vectors on hyperspectral image classification performance | en_US |
dc.type | Conference Object | en_US |
dspace.entity.type | Publication |