On the effect of synthetic morphological feature vectors on hyperspectral image classification performance

dc.authorid Aptoula, Erchan/0000-0001-6168-2883
dc.authorid Yanikoglu, Berrin/0000-0001-7403-7592
dc.authorid Davari, Amirabbas/0000-0001-6672-283X
dc.authorwosid Aptoula, Erchan/AAI-1070-2020
dc.authorwosid Yanikoglu, Berrin/AAE-4843-2022
dc.contributor.author Davari, Amir Abbas
dc.contributor.author Aptoula, Erchan
dc.contributor.author Yanikoglu, Berrin
dc.date.accessioned 2024-10-15T20:18:35Z
dc.date.available 2024-10-15T20:18:35Z
dc.date.issued 2015
dc.department Okan University en_US
dc.department-temp [Davari, Amir Abbas; Yanikoglu, Berrin] Sabanci Univ, Dept Comp Sci & Engn, Istanbul, Turkey; [Aptoula, Erchan] Okan Univ, Dept Comp Engn, Istanbul, Turkey en_US
dc.description Aptoula, Erchan/0000-0001-6168-2883; Yanikoglu, Berrin/0000-0001-7403-7592; Davari, Amirabbas/0000-0001-6672-283X en_US
dc.description.abstract This paper studies the effect of synthetic feature vectors on the classification performance of hyperspectral remote sensing images. As feature vectors, it has been chosen to employ morphological attribute profiles, that have proven themselves in this field. At this early stage of our work, the relatively simple Bootstrapping algorithm has been used for synthetic feature vector generation. Based on experiments conducted on multiple hyperspectral datasets, it has been observed that synthetic feature vectors contribute considerably to classification performance in the case of limited training dataset sizes. en_US
dc.description.woscitationindex Conference Proceedings Citation Index - Science
dc.identifier.citationcount 4
dc.identifier.endpage 656 en_US
dc.identifier.isbn 9781467373869
dc.identifier.issn 2165-0608
dc.identifier.startpage 653 en_US
dc.identifier.uri https://hdl.handle.net/20.500.14517/6392
dc.identifier.wos WOS:000380500900142
dc.language.iso en
dc.publisher Ieee en_US
dc.relation.ispartof 23nd Signal Processing and Communications Applications Conference (SIU) -- MAY 16-19, 2015 -- Inonu Univ, Malatya, TURKEY en_US
dc.relation.ispartofseries Signal Processing and Communications Applications Conference
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject remote sensing en_US
dc.subject hyperspectral image en_US
dc.subject extended morphological attribute profile en_US
dc.subject bootstrap en_US
dc.subject resampling en_US
dc.subject classification en_US
dc.title On the effect of synthetic morphological feature vectors on hyperspectral image classification performance en_US
dc.type Conference Object en_US
dc.wos.citedbyCount 3

Files