On the effect of synthetic morphological feature vectors on hyperspectral image classification performance

dc.authoridAptoula, Erchan/0000-0001-6168-2883
dc.authoridYanikoglu, Berrin/0000-0001-7403-7592
dc.authoridDavari, Amirabbas/0000-0001-6672-283X
dc.authorwosidAptoula, Erchan/AAI-1070-2020
dc.authorwosidYanikoglu, Berrin/AAE-4843-2022
dc.contributor.authorDavari, Amir Abbas
dc.contributor.authorAptoula, Erchan
dc.contributor.authorYanikoglu, Berrin
dc.date.accessioned2024-10-15T20:18:35Z
dc.date.available2024-10-15T20:18:35Z
dc.date.issued2015
dc.departmentOkan Universityen_US
dc.department-temp[Davari, Amir Abbas; Yanikoglu, Berrin] Sabanci Univ, Dept Comp Sci & Engn, Istanbul, Turkey; [Aptoula, Erchan] Okan Univ, Dept Comp Engn, Istanbul, Turkeyen_US
dc.descriptionAptoula, Erchan/0000-0001-6168-2883; Yanikoglu, Berrin/0000-0001-7403-7592; Davari, Amirabbas/0000-0001-6672-283Xen_US
dc.description.abstractThis paper studies the effect of synthetic feature vectors on the classification performance of hyperspectral remote sensing images. As feature vectors, it has been chosen to employ morphological attribute profiles, that have proven themselves in this field. At this early stage of our work, the relatively simple Bootstrapping algorithm has been used for synthetic feature vector generation. Based on experiments conducted on multiple hyperspectral datasets, it has been observed that synthetic feature vectors contribute considerably to classification performance in the case of limited training dataset sizes.en_US
dc.description.woscitationindexConference Proceedings Citation Index - Science
dc.identifier.citation4
dc.identifier.doi[WOS-DOI-BELIRLENECEK-152]
dc.identifier.endpage656en_US
dc.identifier.isbn9781467373869
dc.identifier.issn2165-0608
dc.identifier.startpage653en_US
dc.identifier.urihttps://hdl.handle.net/20.500.14517/6392
dc.identifier.wosWOS:000380500900142
dc.language.isoen
dc.publisherIeeeen_US
dc.relation.ispartof23nd Signal Processing and Communications Applications Conference (SIU) -- MAY 16-19, 2015 -- Inonu Univ, Malatya, TURKEYen_US
dc.relation.ispartofseriesSignal Processing and Communications Applications Conference
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectremote sensingen_US
dc.subjecthyperspectral imageen_US
dc.subjectextended morphological attribute profileen_US
dc.subjectbootstrapen_US
dc.subjectresamplingen_US
dc.subjectclassificationen_US
dc.titleOn the effect of synthetic morphological feature vectors on hyperspectral image classification performanceen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files