Bridging Technology and Medicine: Artificial Intelligence in Targeted Anticancer Drug Delivery

dc.authorid Zarrabi, Ali/0000-0003-0391-1769
dc.authorscopusid 57204962106
dc.authorscopusid 59422583800
dc.authorscopusid 56700291100
dc.authorscopusid 57202500098
dc.authorscopusid 35336983500
dc.authorscopusid 23483174100
dc.authorwosid Iravani, Siavash/F-4046-2014
dc.authorwosid Zarrabi, Ali/U-2602-2019
dc.contributor.author Khorsandi, Danial
dc.contributor.author Farahani, Amin
dc.contributor.author Zarepour, Atefeh
dc.contributor.author Khosravi, Arezoo
dc.contributor.author Iravani, Siavash
dc.contributor.author Zarrabi, Ali
dc.date.accessioned 2025-09-15T18:35:22Z
dc.date.available 2025-09-15T18:35:22Z
dc.date.issued 2025
dc.department Okan University en_US
dc.department-temp [Khorsandi, Danial] Terasaki Inst Biomed Innovat, Woodland Hills, CA 91367 USA; [Farahani, Amin] Shahid Beheshti Univ Med Sci, Res Inst Endocrine Mol Biol, Res Inst Endocrine Sci, Cellular & Mol Endocrine Res Ctr, Tehran, Iran; [Zarepour, Atefeh] Kocaeli Univ, Fac Arts & Sci, Dept Biol, TR-41001 Izmit, Kocaeli, Turkiye; [Zarepour, Atefeh] Saveetha Univ, Saveetha Inst Med & Tech Sci, Saveetha Dent Coll & Hosp, Dept Res Analyt, Chennai 600077, India; [Khosravi, Arezoo] Istanbul Okan Univ, Fac Engn & Nat Sci, Dept Genet & Bioengn, TR-34959 Istanbul, Turkiye; [Khosravi, Arezoo] Yuan Ze Univ, Grad Sch Biotechnol & Bioengn, Taoyuan, Taiwan; [Iravani, Siavash] W Nazar ST, Boostan Ave, Esfahan, Iran; [Zarrabi, Ali] Istinye Univ, Fac Engn & Nat Sci, Dept Biomed Engn, TR-34396 Istanbul, Turkiye en_US
dc.description Zarrabi, Ali/0000-0003-0391-1769 en_US
dc.description.abstract The integration of artificial intelligence (AI) in targeted anticancer drug delivery represents a significant advancement in oncology, offering innovative solutions to enhance the precision and effectiveness of cancer treatments. This review explores the various AI methodologies that are transforming the landscape of targeted drug delivery systems. By leveraging machine learning algorithms, researchers can analyze extensive datasets, including genomic, proteomic, and clinical data, to identify patient-specific factors that influence therapeutic responses. Supervised learning techniques, such as support vector machines and random forests, enable the classification of cancer types and the prediction of treatment outcomes based on historical data. Deep learning approaches, particularly convolutional neural networks, facilitate improved tumor detection and characterization through advanced imaging analysis. Moreover, reinforcement learning optimizes treatment protocols by dynamically adjusting drug dosages and administration schedules based on real-time patient responses. The convergence of AI and targeted anticancer drug delivery holds the promise of advancing cancer therapy by providing tailored treatment strategies that enhance efficacy while minimizing side effects. By improving the understanding of tumor biology and patient variability, AI-driven methods can facilitate the transition from traditional treatment paradigms to more personalized and effective cancer care. This review discusses the challenges and limitations of implementing AI in targeted anticancer drug delivery, including data quality, interpretability of AI models, and the need for robust validation in clinical settings. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1039/d5ra03747f
dc.identifier.endpage 27815 en_US
dc.identifier.issn 2046-2069
dc.identifier.issue 34 en_US
dc.identifier.pmid 40761897
dc.identifier.scopus 2-s2.0-105012379498
dc.identifier.scopusquality Q1
dc.identifier.startpage 27795 en_US
dc.identifier.uri https://doi.org/10.1039/d5ra03747f
dc.identifier.uri https://hdl.handle.net/20.500.14517/8324
dc.identifier.volume 15 en_US
dc.identifier.wos WOS:001543208500001
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Royal Soc Chemistry en_US
dc.relation.ispartof RSC Advances en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.title Bridging Technology and Medicine: Artificial Intelligence in Targeted Anticancer Drug Delivery en_US
dc.type Article en_US
dspace.entity.type Publication

Files