Comparison of Sampling Methods Using Machine Learning and Deep Learning Algorithms with an Imbalanced Data Set for the Prevention of Violence Against Physicians

dc.authorscopusid57457041100
dc.authorscopusid57220749811
dc.authorscopusid57197026443
dc.authorscopusid57456912100
dc.contributor.authorCakir,H.
dc.contributor.authorIncereis,N.
dc.contributor.authorAkgun,B.T.
dc.contributor.authorTastemir,A.S.Y.
dc.date.accessioned2024-05-25T12:34:06Z
dc.date.available2024-05-25T12:34:06Z
dc.date.issued2021
dc.departmentOkan Universityen_US
dc.department-tempCakir H., Istanbul Okan Üniversitesi, Bilgisayar Mühendisliǧi, Istanbul, Turkey; Incereis N., Istanbul Okan Üniversitesi, Bilgisayar Mühendisliǧi, Istanbul, Turkey; Akgun B.T., Istanbul Okan Üniversitesi, Bilgisayar Mühendisliǧi, Istanbul, Turkey; Tastemir A.S.Y., Istanbul Üniversitesi, Kriminoloji Ve Ceza Adaleti, LL.M, Istanbul, Turkeyen_US
dc.description.abstractThe aim of this study is to compare sampling methods using machine and deep learning algorithms with a small and imbalanced data set for the prevention of violence against physicians. In this data set, it is determined whether there is violence against physicians by using various demographic information of physicians. In addition, in this study, it is tried find effective solutions to improve the working conditions of physicians in order to reduce violence against physicians. As a solution to the imbalanced data problem, Synthetic Minority Oversampling (SMOTE), Random Oversampling (ROS) and Random Undersampling (RUS) methods were used to balance the data in this study. Then, Random Forest Classifier (RFC), Extra Tree Classifier (ETC) and Multi-Layer Perceptron (MLP) algorithms were applied. Among all sampling techniques and classification algorithms, the ETC algorithm applied with the ROS method shows the best performance with 82% accuracy and 0.81 F1-Score. © 2021 IEEE.en_US
dc.identifier.citation1
dc.identifier.doi10.1109/UYMS54260.2021.9659758
dc.identifier.isbn978-166541070-0
dc.identifier.scopus2-s2.0-85124802363
dc.identifier.urihttps://doi.org/10.1109/UYMS54260.2021.9659758
dc.identifier.urihttps://hdl.handle.net/20.500.14517/2542
dc.language.isotr
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2021 Turkish National Software Engineering Symposium, UYMS 2021 - Proceedings -- 15th Turkish National Software Engineering Symposium, UYMS 2021 -- 17 November 2021 through 19 November 2021 -- Virtual, Izmir -- 176220en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectcriminologyen_US
dc.subjectCRISP-DMen_US
dc.subjectdeep learningen_US
dc.subjectETCen_US
dc.subjectmachine learningen_US
dc.subjectMLPen_US
dc.subjectRFCen_US
dc.subjectROSen_US
dc.subjectRUSen_US
dc.subjectSMOTEen_US
dc.titleComparison of Sampling Methods Using Machine Learning and Deep Learning Algorithms with an Imbalanced Data Set for the Prevention of Violence Against Physiciansen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files