Hybrid Analytical-Numerical Investigation of the Bratu Equation With Emphasis on Convergence

dc.authorscopusid 57216031779
dc.authorscopusid 8876475200
dc.authorscopusid 15057995400
dc.authorscopusid 36903183800
dc.authorscopusid 58777917600
dc.authorwosid Kheybari, Samad/Abf-8081-2020
dc.authorwosid Alizadeh, Farzaneh/Kck-1260-2024
dc.contributor.author Alizadeh, Farzaneh
dc.contributor.author Darvishi, Mohammad Taghi
dc.contributor.author Kheybari, Samad
dc.contributor.author Hosseini, Kamyar
dc.contributor.author Almutairi, Hanan
dc.date.accessioned 2026-01-15T15:12:35Z
dc.date.available 2026-01-15T15:12:35Z
dc.date.issued 2025
dc.department Okan University en_US
dc.department-temp [Alizadeh, Farzaneh; Hosseini, Kamyar] Near East Univ, Dept Math, TRNC, Mersin 10, TR-99138 Nicosia, Turkiye; [Alizadeh, Farzaneh] Near East Univ, Math Res Ctr, TRNC, Mersin 10, TR-99138 Nicosia, Turkiye; [Alizadeh, Farzaneh; Hosseini, Kamyar] Khazar Univ, Res Ctr Appl Math, Baku, Azerbaijan; [Darvishi, Mohammad Taghi] Razi Univ, Fac Sci, Dept Math, Kermanshah 67149, Iran; [Kheybari, Samad] Univ Kyrenia, Fac Art & Sci, TRNC, Mersin 10, Kyrenia, Turkiye; [Hosseini, Kamyar] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Almutairi, Hanan] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA en_US
dc.description.abstract This study presents a comprehensive investigation of the Bratu equation, a nonlinear boundary value problem with significant applications in combustion theory, chemical reactor modeling, and thermal self-ignition phenomena. Characterized by its exponential nonlinearity and bifurcation behavior, the Bratu equation is analyzed using both exact and approximate methodologies. Lie symmetry analysis is utilized to obtain exact analytical solutions and to reveal the structural and invariant characteristics of the equation. In parallel, a semi-analytical framework is developed, wherein a set of auxiliary differential equations is constructed, and their linear combination is optimized via the weighted residual method to yield approximate solutions. The convergence behavior of the proposed method is thoroughly investigated and confirmed for diverse values of the nonlinear coefficient lambda . Additionally, MATLAB's built-in boundary value problem solvers are employed to compute numerical solutions, serving as benchmarks for validating the analytical and semi-analytical findings. The study identifies the critical bifurcation parameter lambda c and offers detailed insights into the qualitative behavior and multiplicity of solutions. The findings contribute to a deeper understanding of the Bratu equation's solution landscape and its sensitivity to nonlinear parameters. en_US
dc.description.woscitationindex Emerging Sources Citation Index
dc.identifier.doi 10.1142/S1793962325500746
dc.identifier.issn 1793-9623
dc.identifier.issn 1793-9615
dc.identifier.scopus 2-s2.0-105024495926
dc.identifier.scopusquality Q3
dc.identifier.uri https://doi.org/10.1142/S1793962325500746
dc.identifier.uri https://hdl.handle.net/20.500.14517/8707
dc.identifier.wos WOS:001634445300001
dc.identifier.wosquality Q3
dc.language.iso en en_US
dc.publisher World Scientific Publ Co Pte Ltd en_US
dc.relation.ispartof International Journal of Modeling Simulation and Scientific Computing en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Bratu Equation en_US
dc.subject Lie Symmetry en_US
dc.subject Exact Analytical Solution en_US
dc.subject Semi-Analytical Approach en_US
dc.subject Numerical Method en_US
dc.subject Convergence en_US
dc.title Hybrid Analytical-Numerical Investigation of the Bratu Equation With Emphasis on Convergence en_US
dc.type Article en_US
dspace.entity.type Publication

Files