A comparative noise robustness study of tree representations for attribute profile construction;

dc.authorscopusid57195216873
dc.authorscopusid23396161700
dc.authorscopusid49560921100
dc.authorscopusid55945027300
dc.authorscopusid36499129800
dc.authorscopusid57203070803
dc.contributor.authorKoc,S.G.
dc.contributor.authorAptoula,E.
dc.contributor.authorBosilj,P.
dc.contributor.authorDamodaran,B.B.
dc.contributor.authorMura,M.D.
dc.contributor.authorLefevre,S.
dc.date.accessioned2024-05-25T12:32:16Z
dc.date.available2024-05-25T12:32:16Z
dc.date.issued2017
dc.departmentOkan Universityen_US
dc.department-tempKoc S.G., Okan Üniversitesi, Mekatronik Müh. Böl., Istanbul, Turkey; Aptoula E., Gebze Teknik Üniversitesi, Bilişim Teknolojileri Enstitüsü, Kocaeli, Turkey; Bosilj P., University of Lincoln, Collge of Science, Lincoln, United Kingdom; Damodaran B.B., Universite Bretagne Sud, IRISA, Vannes, France; Mura M.D., Grenoble INP, Department Image and Signal, Grenoble, France; Lefevre S., Universite Bretagne Sud, IRISA, Vannes, Franceen_US
dc.description.abstractMorphological attribute profiles are among the most prominent spatial-spectral pixel description tools. They can be calculated efficiently from tree based representations of an image. Although mostly implemented with inclusion trees (i.e. component trees and tree of shapes), attribute profiles have been recently adapted to partitioning trees, and specifically α- and ω-trees. Partitioning trees constitute a more flexible option especially when dealing with multivariate data. This work explores the noise robustness of the aforementioned major tree types in terms of pixel classification performance of the resulting attribute profiles, and presents our preliminary findings that support the use of partitioning trees as a basis for attribute profile construction. © 2017 IEEE.en_US
dc.identifier.citation3
dc.identifier.doi10.1109/SIU.2017.7960159
dc.identifier.isbn978-150906494-6
dc.identifier.scopus2-s2.0-85026311578
dc.identifier.urihttps://doi.org/10.1109/SIU.2017.7960159
dc.identifier.urihttps://hdl.handle.net/20.500.14517/2369
dc.language.isotr
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2017 25th Signal Processing and Communications Applications Conference, SIU 2017 -- 25th Signal Processing and Communications Applications Conference, SIU 2017 -- 15 May 2017 through 18 May 2017 -- Antalya -- 128703en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectattribute profilesen_US
dc.subjecthyperspectral imagesen_US
dc.subjectpartitioning treesen_US
dc.subjectα-treeen_US
dc.subjectω-treeen_US
dc.titleA comparative noise robustness study of tree representations for attribute profile construction;en_US
dc.title.alternativeÖznitelik profili yapiminda kullanilan agac gosterimlerinin gurultu gurbuzlugu bakimindan karşilaştirmali incelenmesien_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files