High Precision LC Ladder Synthesis Part I: Lowpass Ladder Synthesis via Parametric Approach

dc.authorid YARMAN, BEKIR SIDDIK BINBOGA/0000-0003-1562-5524
dc.authorscopusid 56264606600
dc.authorscopusid 7004111952
dc.authorwosid Kilinc, Ali/AAH-9332-2019
dc.authorwosid Yarman, Binboga Siddik/D-4962-2019
dc.contributor.author Kilinc, Ali
dc.contributor.author Yarman, Binboga Siddik
dc.date.accessioned 2024-05-25T11:24:42Z
dc.date.available 2024-05-25T11:24:42Z
dc.date.issued 2013
dc.department Okan University en_US
dc.department-temp [Kilinc, Ali] Okan Univ, TR-34959 Istanbul, Turkey; [Yarman, Binboga Siddik] Istanbul Univ, Dept Elect Elect Engn, TR-34320 Istanbul, Turkey; [Yarman, Binboga Siddik] Isik Univ, TR-34398 Istanbul, Turkey en_US
dc.description YARMAN, BEKIR SIDDIK BINBOGA/0000-0003-1562-5524 en_US
dc.description.abstract In this paper, a novel, high precision lowpass LC ladder synthesis algorithm is presented. The new algorithm directly works on the driving point input immitance function which describes the lowpass LC ladder in resistive termination. The crux of the idea is that, at each step of the proposed method, a simple pole at infinity is removed then, the remaining immitance function is corrected using the parametric method. Parametric method warrants the exact lowpass LC ladder nature of the remaining immitance function. Thus, at the end of the synthesis process, a lowpass LC ladder is obtained with high numerical precision. Examples are presented to exhibit the implementation of the synthesis algorithm. A randomly generated driving point input immitance is synthesized with 19 elements yielding a relative error less than 10(-6). Furthermore, numerical robustness of the novel synthesis method is tested. Based on the tests, we can confidently state that, proposed synthesis algorithm can safely extract more than 40 elements from the original immitance function with a relative error less than 10(-2). Newly developed synthesis algorithm is coded on MatLab environment and it is successfully combined with the "Real Frequency-Direct Computational Technique" to construct practical impedance matching networks. en_US
dc.identifier.citationcount 22
dc.identifier.doi 10.1109/TCSI.2013.2239163
dc.identifier.endpage 2083 en_US
dc.identifier.issn 1549-8328
dc.identifier.issue 8 en_US
dc.identifier.scopus 2-s2.0-84881117143
dc.identifier.scopusquality Q1
dc.identifier.startpage 2074 en_US
dc.identifier.uri https://doi.org/10.1109/TCSI.2013.2239163
dc.identifier.uri https://hdl.handle.net/20.500.14517/844
dc.identifier.volume 60 en_US
dc.identifier.wos WOS:000322332300012
dc.identifier.wosquality Q1
dc.language.iso en
dc.publisher Ieee-inst Electrical Electronics Engineers inc en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 36
dc.subject Broadband matching networks en_US
dc.subject cascaded network synthesis en_US
dc.subject Darlington synthesis en_US
dc.subject equalizers en_US
dc.subject lowpass LC ladder synthesis en_US
dc.subject real frequency techniques en_US
dc.title High Precision LC Ladder Synthesis Part I: Lowpass Ladder Synthesis via Parametric Approach en_US
dc.type Article en_US
dc.wos.citedbyCount 23

Files