High Precision LC Ladder Synthesis Part I: Lowpass Ladder Synthesis via Parametric Approach

dc.authoridYARMAN, BEKIR SIDDIK BINBOGA/0000-0003-1562-5524
dc.authorscopusid56264606600
dc.authorscopusid7004111952
dc.authorwosidKilinc, Ali/AAH-9332-2019
dc.authorwosidYarman, Binboga Siddik/D-4962-2019
dc.contributor.authorKilinc, Ali
dc.contributor.authorYarman, Binboga Siddik
dc.date.accessioned2024-05-25T11:24:42Z
dc.date.available2024-05-25T11:24:42Z
dc.date.issued2013
dc.departmentOkan Universityen_US
dc.department-temp[Kilinc, Ali] Okan Univ, TR-34959 Istanbul, Turkey; [Yarman, Binboga Siddik] Istanbul Univ, Dept Elect Elect Engn, TR-34320 Istanbul, Turkey; [Yarman, Binboga Siddik] Isik Univ, TR-34398 Istanbul, Turkeyen_US
dc.descriptionYARMAN, BEKIR SIDDIK BINBOGA/0000-0003-1562-5524en_US
dc.description.abstractIn this paper, a novel, high precision lowpass LC ladder synthesis algorithm is presented. The new algorithm directly works on the driving point input immitance function which describes the lowpass LC ladder in resistive termination. The crux of the idea is that, at each step of the proposed method, a simple pole at infinity is removed then, the remaining immitance function is corrected using the parametric method. Parametric method warrants the exact lowpass LC ladder nature of the remaining immitance function. Thus, at the end of the synthesis process, a lowpass LC ladder is obtained with high numerical precision. Examples are presented to exhibit the implementation of the synthesis algorithm. A randomly generated driving point input immitance is synthesized with 19 elements yielding a relative error less than 10(-6). Furthermore, numerical robustness of the novel synthesis method is tested. Based on the tests, we can confidently state that, proposed synthesis algorithm can safely extract more than 40 elements from the original immitance function with a relative error less than 10(-2). Newly developed synthesis algorithm is coded on MatLab environment and it is successfully combined with the "Real Frequency-Direct Computational Technique" to construct practical impedance matching networks.en_US
dc.identifier.citation22
dc.identifier.doi10.1109/TCSI.2013.2239163
dc.identifier.endpage2083en_US
dc.identifier.issn1549-8328
dc.identifier.issue8en_US
dc.identifier.scopus2-s2.0-84881117143
dc.identifier.scopusqualityQ1
dc.identifier.startpage2074en_US
dc.identifier.urihttps://doi.org/10.1109/TCSI.2013.2239163
dc.identifier.urihttps://hdl.handle.net/20.500.14517/844
dc.identifier.volume60en_US
dc.identifier.wosWOS:000322332300012
dc.identifier.wosqualityQ1
dc.language.isoen
dc.publisherIeee-inst Electrical Electronics Engineers incen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBroadband matching networksen_US
dc.subjectcascaded network synthesisen_US
dc.subjectDarlington synthesisen_US
dc.subjectequalizersen_US
dc.subjectlowpass LC ladder synthesisen_US
dc.subjectreal frequency techniquesen_US
dc.titleHigh Precision LC Ladder Synthesis Part I: Lowpass Ladder Synthesis via Parametric Approachen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files