Remote Sensing Image Retrieval With Global Morphological Texture Descriptors

dc.authoridAptoula, Erchan/0000-0001-6168-2883
dc.authorscopusid23396161700
dc.authorwosidAptoula, Erchan/AAI-1070-2020
dc.contributor.authorAptoula, Erchan
dc.date.accessioned2024-05-25T11:24:08Z
dc.date.available2024-05-25T11:24:08Z
dc.date.issued2014
dc.departmentOkan Universityen_US
dc.department-tempOkan Univ, Dept Comp Engn, TR-34959 Istanbul, Turkeyen_US
dc.descriptionAptoula, Erchan/0000-0001-6168-2883en_US
dc.description.abstractIn this paper, we present the results of applying global morphological texture descriptors to the problem of content-based remote sensing image retrieval. Specifically, we explore the potential of recently developed multiscale texture descriptors, namely, the circular covariance histogram and the rotation-invariant point triplets. Moreover, we introduce a couple of new descriptors, exploiting the Fourier power spectrum of the quasi-flat-zone-based scale space of their input. The descriptors are evaluated with the UC Merced Land Use-Land Cover data set, which has been only recently made public. The proposed approach is shown to outperform the best known retrieval scores, despite its shorter feature vector length, thus asserting the practical interest of global content descriptors as well as of mathematical morphology in this context.en_US
dc.description.sponsorshipTUBITAK [112E210]en_US
dc.description.sponsorshipThis work was supported by the TUBITAK Career Grant 112E210.en_US
dc.identifier.citation149
dc.identifier.doi10.1109/TGRS.2013.2268736
dc.identifier.endpage3034en_US
dc.identifier.issn0196-2892
dc.identifier.issn1558-0644
dc.identifier.issue5en_US
dc.identifier.scopus2-s2.0-84896319674
dc.identifier.scopusqualityQ1
dc.identifier.startpage3023en_US
dc.identifier.urihttps://doi.org/10.1109/TGRS.2013.2268736
dc.identifier.urihttps://hdl.handle.net/20.500.14517/770
dc.identifier.volume52en_US
dc.identifier.wosWOS:000332484700060
dc.identifier.wosqualityQ1
dc.language.isoen
dc.publisherIeee-inst Electrical Electronics Engineers incen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectContent-based image retrieval (CBIR)en_US
dc.subjectmathematical morphology (MM)en_US
dc.subjectremote sensingen_US
dc.subjecttexture descriptionen_US
dc.titleRemote Sensing Image Retrieval With Global Morphological Texture Descriptorsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files