An adaptive algorithm for numerically solving fractional partial differential equations using Hermite wavelet artificial neural networks

dc.authorid Almakayeel, Naif/0000-0001-9461-5935
dc.authorid Ahmadian, Ali/0000-0002-0106-7050
dc.authorscopusid 57208467202
dc.authorscopusid 55670963500
dc.authorscopusid 55671394500
dc.authorscopusid 57577717800
dc.authorscopusid 55602202100
dc.authorwosid Senu, Norazak/G-2776-2014
dc.authorwosid Ahmadian, Ali/JHT-5936-2023
dc.authorwosid Almakayeel, Naif/ABA-4321-2022
dc.authorwosid Ahmadian, Ali/N-3697-2015
dc.contributor.author Ali, Amina
dc.contributor.author Senu, Norazak
dc.contributor.author Wahi, Nadihah
dc.contributor.author Almakayeel, Naif
dc.contributor.author Ahmadian, Ali
dc.date.accessioned 2024-09-11T07:39:12Z
dc.date.available 2024-09-11T07:39:12Z
dc.date.issued 2024
dc.department Okan University en_US
dc.department-temp [Ali, Amina; Senu, Norazak; Wahi, Nadihah] Univ Putra Malaysia, Dept Math & Stat, Serdang, Malaysia; [Senu, Norazak; Wahi, Nadihah] Univ Putra Malaysia, Inst Math Res, Serdang, Malaysia; [Ali, Amina] Univ Sulaimani, Coll Educ, Dept Math, Sulaymaniyah, Iraq; [Almakayeel, Naif] King Khalid Univ, Coll Engn, Dept Ind Engn, Abha 61421, Saudi Arabia; [Ahmadian, Ali] Univ Mediterranea Reggio Calabria, Decis Lab, Reggio Di Calabria, Italy; [Ahmadian, Ali] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye en_US
dc.description Almakayeel, Naif/0000-0001-9461-5935; Ahmadian, Ali/0000-0002-0106-7050 en_US
dc.description.abstract This study aims to develop a new strategy for solving partial differential equations with fractional derivatives (FPDEs) using artificial neural networks (ANNs). Numerical solutions to FPDEs are obtained through the Hermite wavelet neural network (HWNN) model. The Caputo fractional derivative is consistently applied throughout the research to address fractional -order partial differential problems. To enhance computational efficiency and expand the input pattern, the hidden layer is removed. A neural network (NN) model featuring a feed -forward architecture and error -back propagation without supervision is employed to optimize network parameters and minimize errors. Numerical illustrations are presented to demonstrate the effectiveness of this approach in preserving computational efficiency while solving FPDEs. en_US
dc.description.sponsorship Malaysia Ministry of Education [FRGS/1/2022/STG06/UPM/02/2]; King Khalid University [RGP2/297/45] en_US
dc.description.sponsorship The authors would like to thank the Malaysia Ministry of Education for supporting this work through the Fundamental Research Grant Scheme (Ref. No. FRGS/1/2022/STG06/UPM/02/2) . Also, the 4th author, Naif Almakayeel, extends his appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Research Project under grant number RGP2/297/45. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citationcount 0
dc.identifier.doi 10.1016/j.cnsns.2024.108121
dc.identifier.issn 1007-5704
dc.identifier.issn 1878-7274
dc.identifier.scopus 2-s2.0-85195690775
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1016/j.cnsns.2024.108121
dc.identifier.uri https://hdl.handle.net/20.500.14517/6165
dc.identifier.volume 137 en_US
dc.identifier.wos WOS:001253800700001
dc.identifier.wosquality Q1
dc.language.iso en
dc.publisher Elsevier en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 5
dc.subject Fractional partial differential equations en_US
dc.subject Caputo fractional derivative en_US
dc.subject Hermite wavelet polynomials en_US
dc.subject Neural network en_US
dc.title An adaptive algorithm for numerically solving fractional partial differential equations using Hermite wavelet artificial neural networks en_US
dc.type Article en_US
dc.wos.citedbyCount 4
dspace.entity.type Publication

Files