An adaptive algorithm for numerically solving fractional partial differential equations using Hermite wavelet artificial neural networks

dc.authoridAlmakayeel, Naif/0000-0001-9461-5935
dc.authoridAhmadian, Ali/0000-0002-0106-7050
dc.authorscopusid57208467202
dc.authorscopusid55670963500
dc.authorscopusid55671394500
dc.authorscopusid57577717800
dc.authorscopusid55602202100
dc.authorwosidSenu, Norazak/G-2776-2014
dc.authorwosidAhmadian, Ali/JHT-5936-2023
dc.authorwosidAlmakayeel, Naif/ABA-4321-2022
dc.authorwosidAhmadian, Ali/N-3697-2015
dc.contributor.authorAli, Amina
dc.contributor.authorSenu, Norazak
dc.contributor.authorWahi, Nadihah
dc.contributor.authorAlmakayeel, Naif
dc.contributor.authorAhmadian, Ali
dc.date.accessioned2024-09-11T07:39:12Z
dc.date.available2024-09-11T07:39:12Z
dc.date.issued2024
dc.departmentOkan Universityen_US
dc.department-temp[Ali, Amina; Senu, Norazak; Wahi, Nadihah] Univ Putra Malaysia, Dept Math & Stat, Serdang, Malaysia; [Senu, Norazak; Wahi, Nadihah] Univ Putra Malaysia, Inst Math Res, Serdang, Malaysia; [Ali, Amina] Univ Sulaimani, Coll Educ, Dept Math, Sulaymaniyah, Iraq; [Almakayeel, Naif] King Khalid Univ, Coll Engn, Dept Ind Engn, Abha 61421, Saudi Arabia; [Ahmadian, Ali] Univ Mediterranea Reggio Calabria, Decis Lab, Reggio Di Calabria, Italy; [Ahmadian, Ali] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiyeen_US
dc.descriptionAlmakayeel, Naif/0000-0001-9461-5935; Ahmadian, Ali/0000-0002-0106-7050en_US
dc.description.abstractThis study aims to develop a new strategy for solving partial differential equations with fractional derivatives (FPDEs) using artificial neural networks (ANNs). Numerical solutions to FPDEs are obtained through the Hermite wavelet neural network (HWNN) model. The Caputo fractional derivative is consistently applied throughout the research to address fractional -order partial differential problems. To enhance computational efficiency and expand the input pattern, the hidden layer is removed. A neural network (NN) model featuring a feed -forward architecture and error -back propagation without supervision is employed to optimize network parameters and minimize errors. Numerical illustrations are presented to demonstrate the effectiveness of this approach in preserving computational efficiency while solving FPDEs.en_US
dc.description.sponsorshipMalaysia Ministry of Education [FRGS/1/2022/STG06/UPM/02/2]; King Khalid University [RGP2/297/45]en_US
dc.description.sponsorshipThe authors would like to thank the Malaysia Ministry of Education for supporting this work through the Fundamental Research Grant Scheme (Ref. No. FRGS/1/2022/STG06/UPM/02/2) . Also, the 4th author, Naif Almakayeel, extends his appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Research Project under grant number RGP2/297/45.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citation0
dc.identifier.doi10.1016/j.cnsns.2024.108121
dc.identifier.issn1007-5704
dc.identifier.issn1878-7274
dc.identifier.scopus2-s2.0-85195690775
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.cnsns.2024.108121
dc.identifier.urihttps://hdl.handle.net/20.500.14517/6165
dc.identifier.volume137en_US
dc.identifier.wosWOS:001253800700001
dc.identifier.wosqualityQ1
dc.language.isoen
dc.publisherElsevieren_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFractional partial differential equationsen_US
dc.subjectCaputo fractional derivativeen_US
dc.subjectHermite wavelet polynomialsen_US
dc.subjectNeural networken_US
dc.titleAn adaptive algorithm for numerically solving fractional partial differential equations using Hermite wavelet artificial neural networksen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files