An adaptive algorithm for numerically solving fractional partial differential equations using Hermite wavelet artificial neural networks
dc.authorid | Almakayeel, Naif/0000-0001-9461-5935 | |
dc.authorid | Ahmadian, Ali/0000-0002-0106-7050 | |
dc.authorscopusid | 57208467202 | |
dc.authorscopusid | 55670963500 | |
dc.authorscopusid | 55671394500 | |
dc.authorscopusid | 57577717800 | |
dc.authorscopusid | 55602202100 | |
dc.authorwosid | Senu, Norazak/G-2776-2014 | |
dc.authorwosid | Ahmadian, Ali/JHT-5936-2023 | |
dc.authorwosid | Almakayeel, Naif/ABA-4321-2022 | |
dc.authorwosid | Ahmadian, Ali/N-3697-2015 | |
dc.contributor.author | Ali, Amina | |
dc.contributor.author | Senu, Norazak | |
dc.contributor.author | Wahi, Nadihah | |
dc.contributor.author | Almakayeel, Naif | |
dc.contributor.author | Ahmadian, Ali | |
dc.date.accessioned | 2024-09-11T07:39:12Z | |
dc.date.available | 2024-09-11T07:39:12Z | |
dc.date.issued | 2024 | |
dc.department | Okan University | en_US |
dc.department-temp | [Ali, Amina; Senu, Norazak; Wahi, Nadihah] Univ Putra Malaysia, Dept Math & Stat, Serdang, Malaysia; [Senu, Norazak; Wahi, Nadihah] Univ Putra Malaysia, Inst Math Res, Serdang, Malaysia; [Ali, Amina] Univ Sulaimani, Coll Educ, Dept Math, Sulaymaniyah, Iraq; [Almakayeel, Naif] King Khalid Univ, Coll Engn, Dept Ind Engn, Abha 61421, Saudi Arabia; [Ahmadian, Ali] Univ Mediterranea Reggio Calabria, Decis Lab, Reggio Di Calabria, Italy; [Ahmadian, Ali] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye | en_US |
dc.description | Almakayeel, Naif/0000-0001-9461-5935; Ahmadian, Ali/0000-0002-0106-7050 | en_US |
dc.description.abstract | This study aims to develop a new strategy for solving partial differential equations with fractional derivatives (FPDEs) using artificial neural networks (ANNs). Numerical solutions to FPDEs are obtained through the Hermite wavelet neural network (HWNN) model. The Caputo fractional derivative is consistently applied throughout the research to address fractional -order partial differential problems. To enhance computational efficiency and expand the input pattern, the hidden layer is removed. A neural network (NN) model featuring a feed -forward architecture and error -back propagation without supervision is employed to optimize network parameters and minimize errors. Numerical illustrations are presented to demonstrate the effectiveness of this approach in preserving computational efficiency while solving FPDEs. | en_US |
dc.description.sponsorship | Malaysia Ministry of Education [FRGS/1/2022/STG06/UPM/02/2]; King Khalid University [RGP2/297/45] | en_US |
dc.description.sponsorship | The authors would like to thank the Malaysia Ministry of Education for supporting this work through the Fundamental Research Grant Scheme (Ref. No. FRGS/1/2022/STG06/UPM/02/2) . Also, the 4th author, Naif Almakayeel, extends his appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Research Project under grant number RGP2/297/45. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | 0 | |
dc.identifier.doi | 10.1016/j.cnsns.2024.108121 | |
dc.identifier.issn | 1007-5704 | |
dc.identifier.issn | 1878-7274 | |
dc.identifier.scopus | 2-s2.0-85195690775 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.uri | https://doi.org/10.1016/j.cnsns.2024.108121 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14517/6165 | |
dc.identifier.volume | 137 | en_US |
dc.identifier.wos | WOS:001253800700001 | |
dc.identifier.wosquality | Q1 | |
dc.language.iso | en | |
dc.publisher | Elsevier | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Fractional partial differential equations | en_US |
dc.subject | Caputo fractional derivative | en_US |
dc.subject | Hermite wavelet polynomials | en_US |
dc.subject | Neural network | en_US |
dc.title | An adaptive algorithm for numerically solving fractional partial differential equations using Hermite wavelet artificial neural networks | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication |