Combination of group method of data handling neural network with multi-objective gray wolf optimizer to predict the viscosity of MWCNT-TiO2-oil SAE50 nanofluid

dc.authorscopusid 59424156600
dc.authorscopusid 59375113300
dc.authorscopusid 57216923851
dc.authorscopusid 59424116200
dc.authorscopusid 58852252200
dc.authorscopusid 57212897458
dc.authorscopusid 23028598900
dc.contributor.author Zhou, Hongfei
dc.contributor.author Ali, Ali B. M.
dc.contributor.author Zekri, Hussein
dc.contributor.author Abdulaali, Hanaa Kadhim
dc.contributor.author Bains, Pardeep Singh
dc.contributor.author Sharma, Rohit
dc.contributor.author Hashemian, Mohammad
dc.date.accessioned 2024-12-15T15:40:59Z
dc.date.available 2024-12-15T15:40:59Z
dc.date.issued 2024
dc.department Okan University en_US
dc.department-temp [Zhou, Hongfei] Hebei Petr Univ Technol, Dept Comp & Informat Engn, Chengde 067000, Hebei, Peoples R China; [Ali, Ali B. M.] Univ Warith Al Anbiyaa, Coll Engn, Air Conditioning Engn Dept, Karbala, Iraq; [Zekri, Hussein] Univ Zakho, Coll Engn, Dept Mech Engn, Zakho, Kurdistan, Iraq; [Abdulaali, Hanaa Kadhim] Univ Technol Iraq, Dept Chem Engn, Baghdad, Iraq; [Bains, Pardeep Singh] JAIN Deemed To Be Univ, Fac Engn & Technol, Dept Mech Engn, Bengaluru 560069, Karnataka, India; [Bains, Pardeep Singh] Vivekananda Global Univ, Dept Mech Engn, Jaipur 303012, Rajasthan, India; [Sharma, Rohit] Shobhit Univ, Sch Engn & Technol, Gangoh 247341, Uttar Pradesh, India; [Sharma, Rohit] ARKA Jain Univ, Dept Mech Engn, Jamshedpur 831001, Jharkhand, India; [Abduvalieva, Dilsora] Shahrekord Univ, Dept Mech Engn, Shahrekord 8818634141, Iran; [Baghoolizadeh, Mohammadreza] Tashkent State Pedag Univ, Dept Math & Informat Technol, Bunyodkor Ave 27, Tashkent 100070, Uzbekistan; [Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon; [Hashemian, Mohammad] Islamic Azad Univ, Khomeinishahr Branch, Dept Mech Engn, Khomeinishahr, Iran en_US
dc.description.abstract Background: Nanofluids are the most widely used materials in various engineering fields. They have different properties under different conditions, and predicting their properties requires several experiments. Artificial intelligence can predict the properties of nanofluids in the shortest time and cost. Methodology: This study aims to predict the viscosity and share rate of MWCNT-TiO2 (40-60)-oil SAE50 nano-lubricant (NL). Machine learning algorithms and neural networks can respond best to this important matter. For this purpose, the Group Method of Data Handling (GMDH) neural network is combined with the meta-heuristic algorithm Multi-Objective Gray Wolf Optimizer (MOGWO). This way, the experimental data is first given to the artificial neural network (ANN). Then, the meta-heuristic algorithm optimizes the hyperparameters of the ANN to bring the predicted results closer to the experimental data and minimize the error. The MOGWO algorithm's regulators are the number of iterations and the number of wolves investigated in this study to better select this algorithm. Then, these modes are measured using two criteria, correlation coefficient (R) and rote mean squared error (RMSE), to choose the best mode. Finally, by using the extracted equations by the GMDH neural network, the best models or the Pareto front can be obtained using the MOGWO meta-heuristic algorithm. Results: The error histogram diagram shows the excellent performance of the combination of the GMDH neural network and the MOGWO meta-heuristic algorithm. The values of R and RMSE for viscosity and shear rate are equal to 0.99217, 15.8749, and 0.99031, 68.7723, respectively. The optimization results showed that the best conditions to meet viscosity and cutting rate are when phi, T, and gamma equal 1.21*e-5, 46.71, and 50.11. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citationcount 0
dc.identifier.doi 10.1016/j.csite.2024.105541
dc.identifier.issn 2214-157X
dc.identifier.scopus 2-s2.0-85210126534
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1016/j.csite.2024.105541
dc.identifier.uri https://hdl.handle.net/20.500.14517/7526
dc.identifier.volume 64 en_US
dc.identifier.wos WOS:001369556900001
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 1
dc.subject Multi-objective gray wolf optimizer en_US
dc.subject Viscosity en_US
dc.subject Nano-lubricant en_US
dc.title Combination of group method of data handling neural network with multi-objective gray wolf optimizer to predict the viscosity of MWCNT-TiO2-oil SAE50 nanofluid en_US
dc.type Article en_US
dc.wos.citedbyCount 0

Files