Artificial neural network modeling of thermal characteristics of WO3-CuO (50:50)/water hybrid nanofluid with a back-propagation algorithm

dc.authorid Yiran, Qu/0009-0008-8400-096X
dc.authorid Jumaah, Dheyaa/0000-0001-7259-3392
dc.authorscopusid 58850683700
dc.authorscopusid 57225906716
dc.authorscopusid 22136195900
dc.authorscopusid 23028598900
dc.authorscopusid 57213198671
dc.authorscopusid 58290938100
dc.authorscopusid 58290938100
dc.authorwosid Yiran, Qu/JFB-5044-2023
dc.authorwosid Jumaah, Dheyaa/GPS-5013-2022
dc.contributor.author Qu, Yiran
dc.contributor.author Jasim, Dheyaa J.
dc.contributor.author Sajadi, S. Mohammad
dc.contributor.author Salahshour, Soheil
dc.contributor.author Khabaz, Mohamad Khaje
dc.contributor.author Rahmanian, Alireza
dc.contributor.author Baghaei, Sh.
dc.date.accessioned 2024-05-25T11:37:42Z
dc.date.available 2024-05-25T11:37:42Z
dc.date.issued 2024
dc.department Okan University en_US
dc.department-temp [Qu, Yiran] Newcastle Univ, Sch Civil Engn & Geosci, Newcastle Upon Tyne NE1 7RU, England; [Jasim, Dheyaa J.] Al Amarah Univ Coll, Dept Petr Engn, Maysan, Iraq; [Sajadi, S. Mohammad] Cihan Univ Erbil, Dept Nutr, Erbil, Kurdistan Regio, Iraq; [Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon; [Khabaz, Mohamad Khaje; Baghaei, Sh.] Islamic Azad Univ, Dept Mech Engn, Khomeinishahr Branch, Khomeinishahr, Iran; [Rahmanian, Alireza] Isfahan Univ Technol, Coll Agr, Dept Biosyst Engn, Esfahan 83111, Iran en_US
dc.description Yiran, Qu/0009-0008-8400-096X; Jumaah, Dheyaa/0000-0001-7259-3392 en_US
dc.description.abstract Thermophysical properties such as thermal conductivity (knf) make the use of fluid suitable for heat transfer. Fluids such as water have limited applications due to their low thermal conductivity. One of the new methods to improve the properties of fluids is to add nanoparticles with high thermal conductivity and create a nanofluid. Nanofluids combine the suspension of two or more nanoparticles in a base fluid or the suspension of hybrid nanoparticles in a base fluid. This study investigates the thermal behavior of WO3-CuO (50:50)/water nanofluid using an artificial neural network (ANN) and back -propagation algorithm. The results show that increasing the volume fraction of nanoparticles (phi) (due to increasing the surface -to -volume ratio) increases the knf. In this study, ANN modeling for WO3-CuO/water (50:50) hybrid nanofluid was performed to investigate the effect of nanofluid on knf. These two important parameters are phi and temperature. The results show that increasing the phi increases the knf due to increasing the surface -to -volume ratio and the collision between nanoparticles. Increasing the temperature shows a similar effect and improves the knf by increasing the interaction between the nanoparticles. The effect of temperature on the knf is more significant than the phi, equal to 16.33% and 6.72%, respectively. Function parameters such as correlation and error value for hidden layer 7 and 12 neurons are about 0.982, 0.981, and 10-6, respectively. As a result, ANN models offer acceptable performance in estimating knf, and the correlation coefficients and error values are 0.96 and 10-6, respectively. Given the absolute error value, it can be concluded that the proposed models can predict the knf of WO3-CuO (50:50)/water hybrid nanofluid. en_US
dc.identifier.citationcount 1
dc.identifier.doi 10.1016/j.mtcomm.2024.108169
dc.identifier.issn 2352-4928
dc.identifier.scopus 2-s2.0-85183466186
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1016/j.mtcomm.2024.108169
dc.identifier.uri https://hdl.handle.net/20.500.14517/1209
dc.identifier.volume 38 en_US
dc.identifier.wos WOS:001173195300001
dc.identifier.wosquality Q2
dc.institutionauthor Salahshour S.
dc.language.iso en
dc.publisher Elsevier en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 8
dc.subject Thermal conductivity en_US
dc.subject Nanofluid en_US
dc.subject ANN en_US
dc.subject Back -propagation algorithm en_US
dc.title Artificial neural network modeling of thermal characteristics of WO3-CuO (50:50)/water hybrid nanofluid with a back-propagation algorithm en_US
dc.type Article en_US
dc.wos.citedbyCount 7

Files