Carleman estimates and unique continuation property for abstract elliptic equations

dc.authorscopusid 6508234400
dc.authorwosid Shakhmurov, Veli/AAG-8871-2019
dc.contributor.author Shakhmurov, Veli B.
dc.date.accessioned 2024-05-25T11:21:31Z
dc.date.available 2024-05-25T11:21:31Z
dc.date.issued 2012
dc.department Okan University en_US
dc.department-temp Okan Univ, Dept Elect Engn & Commun, TR-34959 Istanbul, Turkey en_US
dc.description.abstract The unique continuation theorems for elliptic differential-operator equations with variable coefficients in vector-valued L (p) -space are investigated. The operator-valued multiplier theorems, maximal regularity properties and the Carleman estimates for the equations are employed to obtain these results. In applications the unique continuation theorems for quasielliptic partial differential equations and finite or infinite systems of elliptic equations are studied. AMS: 34G10; 35B45; 35B60. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1186/1687-2770-2012-46
dc.identifier.issn 1687-2770
dc.identifier.scopus 2-s2.0-84866654996
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1186/1687-2770-2012-46
dc.identifier.uri https://hdl.handle.net/20.500.14517/581
dc.identifier.wos WOS:000304617800001
dc.identifier.wosquality Q1
dc.language.iso en
dc.publisher Springeropen en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 1
dc.subject Carleman estimates en_US
dc.subject unique continuation en_US
dc.subject embedding theorems en_US
dc.subject Banach-valued function spaces en_US
dc.subject differential operator equations en_US
dc.subject maximal L-p-regularity en_US
dc.subject operator-valued Fourier multipliers en_US
dc.subject interpolation of Banach spaces en_US
dc.title Carleman estimates and unique continuation property for abstract elliptic equations en_US
dc.type Article en_US
dc.wos.citedbyCount 0

Files