Discovery of the Similarities for Parasites

dc.contributor.author Yildirim, Pinar
dc.contributor.author Ceken, Kagan
dc.date.accessioned 2024-05-25T11:40:29Z
dc.date.available 2024-05-25T11:40:29Z
dc.date.issued 2020
dc.department Okan University en_US
dc.department-temp [Yildirim, Pinar] Istanbul Okan Univ, Fac Engn, Dept Comp Engn, Istanbul, Turkey; [Ceken, Kagan] Akdeniz Univ, Fac Med, Dept Radiol, Antalya, Turkey en_US
dc.description.abstract In this paper we report on a study for discovering hidden patterns in commonly seen parasites by using abstracts from MEDLINE database. Parasites affect millions of people in the world and cause tremendous morbidity and mortality. Diagnosing parasites can be difficult because some symptoms and related to gene-proteins can be common to some of them. We utilize a web based biomedical text mining tool to find symptoms and gene-proteins. After selecting the most common symptoms and gene-proteins, we create two datasets with the frequencies of symptoms and gene-proteins for each parasite. For this work we selected the k-means algorithm for clustering analysis and apply it on the datasets. In addition, we compared different algorithms to observe the performance of k-means. Clustering analysis generated different types of groups of parasites. Although the results are not 100% certain, they can make positive contributions to medical researchers and experts for the diagnosis of parasites. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1109/uyms50627.2020.9247052
dc.identifier.endpage 62 en_US
dc.identifier.isbn 9781728185415
dc.identifier.startpage 59 en_US
dc.identifier.uri https://doi.org/10.1109/uyms50627.2020.9247052
dc.identifier.uri https://hdl.handle.net/20.500.14517/1442
dc.identifier.wos WOS:000680657300012
dc.institutionauthor Yıldırım, Pınar
dc.language.iso en
dc.publisher Ieee en_US
dc.relation.ispartof 14th Turkish National Software Engineering Symposium (UYMS) -- OCT 07-09, 2020 -- ELECTR NETWORK en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject biomedical text mining en_US
dc.subject clustering analysis en_US
dc.subject k-means algorithm en_US
dc.subject parasites en_US
dc.title Discovery of the Similarities for Parasites en_US
dc.type Conference Object en_US
dc.wos.citedbyCount 0

Files