Intelligent cardiovascular disease diagnosis using deep learning enhanced neural network with ant colony optimization

dc.authorid Ahmadian, Ali/0000-0002-0106-7050
dc.authorscopusid 59332802900
dc.authorscopusid 35203460000
dc.authorscopusid 57213001965
dc.authorscopusid 59352444200
dc.authorscopusid 56224779700
dc.authorwosid Ahmadian, Ali/N-3697-2015
dc.contributor.author Xia, Biao
dc.contributor.author Innab, Nisreen
dc.contributor.author Kandasamy, Venkatachalam
dc.contributor.author Ahmadian, Ali
dc.contributor.author Ferrara, Massimiliano
dc.date.accessioned 2024-10-15T20:20:27Z
dc.date.available 2024-10-15T20:20:27Z
dc.date.issued 2024
dc.department Okan University en_US
dc.department-temp [Xia, Biao] Nanjing Med Univ, Changzhou Hosp 2, Med Equipment Dept, Dept Orthoped, Changzhou 213164, Jiangsu, Peoples R China; [Innab, Nisreen] AlMaarefa Univ, Coll Appl Sci, Dept Comp Sci & Informat Syst, Diriyah 13713, Riyadh, Saudi Arabia; [Kandasamy, Venkatachalam] Univ Hradec Kralove, Fac Sci, Dept Math, Hradec Kralove, Czech Republic; [Ahmadian, Ali] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Ferrara, Massimiliano] Univ Bocconi, ICRIOS, Via Rontgen 1, I-20136 Milan, Italy en_US
dc.description Ahmadian, Ali/0000-0002-0106-7050 en_US
dc.description.abstract To identify patterns in big medical datasets and use Deep Learning and Machine Learning (ML) to reliably diagnose Cardio Vascular Disease (CVD), researchers are currently delving deeply into these fields. Training on large datasets and producing highly accurate validation results is exceedingly difficult. Furthermore, early and precise diagnosis is necessary due to the increased global prevalence of cardiovascular disease (CVD). However, the increasing complexity of healthcare datasets makes it challenging to detect feature connections and produce precise predictions. To address these issues, the Intelligent Cardiovascular Disease Diagnosis based on Ant Colony Optimisation with Enhanced Deep Learning (ICVD-ACOEDL) model was developed. This model employs feature selection (FS) and hyperparameter optimization to diagnose CVD. Applying a min-max scaler, medical data is first consistently prepared. The key feature that sets ICVD-ACOEDL apart is the use of Ant Colony Optimisation (ACO) to select an optimal feature subset, which in turn helps to upgrade the performance of the ensuring deep learning enhanced neural network (DLENN) classifier. The model reforms the hyperparameters of DLENN for CVD classification using Bayesian optimization. Comprehensive evaluations on benchmark medical datasets show that ICVD-ACOEDL exceeds existing techniques, indicating that it could have a significant impact on CVD diagnosis. The model furnishes a workable way to increase CVD classification efficiency and accuracy in real-world medical situations by incorporating ACO for feature selection, min-max scaling for data pre-processing, and Bayesian optimization for hyperparameter tweaking. en_US
dc.description.sponsorship AlMaarefa University, Riyadh, Saudi Arabia en_US
dc.description.sponsorship Nisreen Innab would like to express sincere gratitude to AlMaarefa University, Riyadh, Saudi Arabia, for supporting this research. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citationcount 0
dc.identifier.doi 10.1038/s41598-024-71932-z
dc.identifier.issn 2045-2322
dc.identifier.issue 1 en_US
dc.identifier.pmid 39294203
dc.identifier.scopus 2-s2.0-85204299385
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1038/s41598-024-71932-z
dc.identifier.uri https://hdl.handle.net/20.500.14517/6583
dc.identifier.volume 14 en_US
dc.identifier.wos WOS:001322528400036
dc.identifier.wosquality Q2
dc.language.iso en
dc.publisher Nature Portfolio en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 3
dc.subject Cardiovascular disease en_US
dc.subject Ant Colony Optimisation en_US
dc.subject Min-max scaler en_US
dc.subject Bayesian optimisation en_US
dc.subject Hyperparameter en_US
dc.title Intelligent cardiovascular disease diagnosis using deep learning enhanced neural network with ant colony optimization en_US
dc.type Article en_US
dc.wos.citedbyCount 2

Files