An RBF-based artificial neural network for prediction of dynamic viscosity of MgO/SAE 5W30 oil hybrid nano-lubricant to obtain the best performance of energy systems

dc.authorid Jasim, Dheyaa Jumaah/0000-0001-7259-3392
dc.authorid Eftekhari, SeyedAli/0000-0002-9730-4232
dc.authorid toghraie, davood/0000-0003-3344-8920
dc.authorscopusid 58777949400
dc.authorscopusid 57225906716
dc.authorscopusid 22136195900
dc.authorscopusid 16416765400
dc.authorscopusid 57208127315
dc.authorscopusid 23028598900
dc.authorscopusid 57366147000
dc.authorwosid Jasim, Dheyaa Jumaah/GPS-5013-2022
dc.authorwosid Eftekhari, SeyedAli/AAG-3342-2019
dc.contributor.author Gao, Jie
dc.contributor.author Jasim, Dheyaa J.
dc.contributor.author Sajadi, S. Mohammad
dc.contributor.author Eftekhari, S. Ali
dc.contributor.author Hekmatifar, Maboud
dc.contributor.author Salahshour, Soheil
dc.contributor.author Toghraie, Davood
dc.date.accessioned 2024-05-25T11:28:27Z
dc.date.available 2024-05-25T11:28:27Z
dc.date.issued 2024
dc.department Okan University en_US
dc.department-temp [Gao, Jie] Guangzhou Coll Technol & Business, Sch Engn, Guangzhou 510850, Guangdong, Peoples R China; [Jasim, Dheyaa J.] Al Amarah Univ Coll, Dept Petr Engn, Maysan, Iraq; [Sajadi, S. Mohammad] Cihan Univ Erbil, Dept Nutr, Erbil, Kurdistan Regio, Iraq; [Eftekhari, S. Ali; Hekmatifar, Maboud; Toghraie, Davood] Islamic Azad Univ, Dept Mech Engn, Khomeinishahr Branch, Khomeinishahr, Iran; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon; [Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Dept Genet & Bioengn, Istanbul, Turkiye; [Shahdost, Farzad Tat] Islamic Azad Univ, Garmsar Branch, Elect Control Engn, Semnan, Iran en_US
dc.description Jasim, Dheyaa Jumaah/0000-0001-7259-3392; Eftekhari, SeyedAli/0000-0002-9730-4232; toghraie, davood/0000-0003-3344-8920 en_US
dc.description.abstract Technological progress and complications in microfluidics usage have led researchers to use nanomaterials in different scientific fields. The properties and characteristics of hybrid Nanofluids are more enhanced compared to nanofluids based on single nanoparticles and conventional liquid. Recently, modeling methods have replaced most common statistical methods. Due to the high accuracy of the response and generalizability in various conditions, artificial neural networks (ANNs) to estimate nanofluids' viscosity and thermal conductivity have become common. Dynamic viscosity (mu) (estimation analyzes one of the key factors in determining the hydro-dynamic behavior of nanofluids. In this manuscript, an RBF-ANN is used to simulate the input-output relation of dynamic viscosity of the MgO-SAE 5W30 Oil hybrid nanofluid versus three important parameters, including volume fraction of nanoparticles, temperature, and shear rate. The results show that for this nanofluid, by increasing temperature and shear rate, the dynamic viscosity is decreased. In contrast, the volume fraction of nanoparticles directly affects the output, although this consequence can be neglected. By increasing the tem-perature from 5 degrees to 55 degrees C, the dynamic viscosity would decrease. Also, changing the shear rate from 50 to 1000 rpm decreases the dynamic viscosity from 400 cP to 25 cP. It is worth mentioning that the obtained trends and deviation of dynamic viscosity for MgO-SAE 5W30 Oil hybrid nanofluid versus temperature, the volume fraction of nanoparticles, and shear rate can be used by the academic community as well as an industrial section to obtain the best performance of energy systems based on this nanofluid. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1016/j.mtcomm.2023.107836
dc.identifier.issn 2352-4928
dc.identifier.scopus 2-s2.0-85180528024
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1016/j.mtcomm.2023.107836
dc.identifier.uri https://hdl.handle.net/20.500.14517/1156
dc.identifier.volume 38 en_US
dc.identifier.wos WOS:001141228500001
dc.identifier.wosquality Q2
dc.institutionauthor Salahshour S.
dc.language.iso en
dc.publisher Elsevier en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 2
dc.subject Radial Basis Function en_US
dc.subject ANN en_US
dc.subject Hybrid nanofluid en_US
dc.subject Dynamic viscosity en_US
dc.title An RBF-based artificial neural network for prediction of dynamic viscosity of MgO/SAE 5W30 oil hybrid nano-lubricant to obtain the best performance of energy systems en_US
dc.type Article en_US
dc.wos.citedbyCount 2

Files