A comparative noise robustness study of tree representations for attribute profile construction;

dc.authorscopusid 57195216873
dc.authorscopusid 23396161700
dc.authorscopusid 49560921100
dc.authorscopusid 55945027300
dc.authorscopusid 36499129800
dc.authorscopusid 57203070803
dc.contributor.author Koc,S.G.
dc.contributor.author Aptoula,E.
dc.contributor.author Bosilj,P.
dc.contributor.author Damodaran,B.B.
dc.contributor.author Mura,M.D.
dc.contributor.author Lefevre,S.
dc.date.accessioned 2024-05-25T12:32:16Z
dc.date.available 2024-05-25T12:32:16Z
dc.date.issued 2017
dc.department Okan University en_US
dc.department-temp Koc S.G., Okan Üniversitesi, Mekatronik Müh. Böl., Istanbul, Turkey; Aptoula E., Gebze Teknik Üniversitesi, Bilişim Teknolojileri Enstitüsü, Kocaeli, Turkey; Bosilj P., University of Lincoln, Collge of Science, Lincoln, United Kingdom; Damodaran B.B., Universite Bretagne Sud, IRISA, Vannes, France; Mura M.D., Grenoble INP, Department Image and Signal, Grenoble, France; Lefevre S., Universite Bretagne Sud, IRISA, Vannes, France en_US
dc.description.abstract Morphological attribute profiles are among the most prominent spatial-spectral pixel description tools. They can be calculated efficiently from tree based representations of an image. Although mostly implemented with inclusion trees (i.e. component trees and tree of shapes), attribute profiles have been recently adapted to partitioning trees, and specifically α- and ω-trees. Partitioning trees constitute a more flexible option especially when dealing with multivariate data. This work explores the noise robustness of the aforementioned major tree types in terms of pixel classification performance of the resulting attribute profiles, and presents our preliminary findings that support the use of partitioning trees as a basis for attribute profile construction. © 2017 IEEE. en_US
dc.identifier.citationcount 3
dc.identifier.doi 10.1109/SIU.2017.7960159
dc.identifier.isbn 978-150906494-6
dc.identifier.scopus 2-s2.0-85026311578
dc.identifier.uri https://doi.org/10.1109/SIU.2017.7960159
dc.identifier.uri https://hdl.handle.net/20.500.14517/2369
dc.language.iso tr
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof 2017 25th Signal Processing and Communications Applications Conference, SIU 2017 -- 25th Signal Processing and Communications Applications Conference, SIU 2017 -- 15 May 2017 through 18 May 2017 -- Antalya -- 128703 en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 3
dc.subject attribute profiles en_US
dc.subject hyperspectral images en_US
dc.subject partitioning trees en_US
dc.subject α-tree en_US
dc.subject ω-tree en_US
dc.title A comparative noise robustness study of tree representations for attribute profile construction; en_US
dc.title.alternative Öznitelik profili yapiminda kullanilan agac gosterimlerinin gurultu gurbuzlugu bakimindan karşilaştirmali incelenmesi en_US
dc.type Conference Object en_US

Files