Khosravı, Arezoo

Loading...
Profile Picture
Name Variants
Khosravi A.
Arezoo, Khosravı
Arezoo Khosravı
KHOSRAVI Arezoo
Khosravi Arezoo
Arezoo KHOSRAVI
Khosravı, A.
Khosravı Arezoo
KHOSRAVi Arezoo
Arezoo KHOSRAVi
A., Khosravı
Khosravi, A.
Khosravı, Arezoo
Khosravi, Arezoo
Arezoo Khosravi
Job Title
Dr.Öğr.Üyesi
Email Address
arezoo.khosravi@okan.edu.tr
ORCID ID
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID
Scholarly Output

31

Articles

12

Citation Count

6

Supervised Theses

0

Scholarly Output Search Results

Now showing 1 - 10 of 31
  • Review
    Citation Count: 1
    Innovative approaches in skin therapy: bionanocomposites for skin tissue repair and regeneration
    (Royal Soc Chemistry, 2024) Bal-Ozturk, Ayca; Alarcin, Emine; Yasayan, Gokcen; Avci-Adali, Meltem; Khosravi, Arezoo; Zarepour, Atefeh; Zarrabi, Ali; Genetik ve Biyomühendislik / Genetic and Bio-Engineering
    Bionanocomposites (BNCs) have gained significant attention in the field of biomaterials, particularly for their potential applications in skin tissue repair and regeneration. Advantages of these biomaterials in skin care and wound healing/dressings include their ability to provide a suitable environment for tissue regeneration. They can mimic the extracellular matrix, supporting cellular interactions and promoting the formation of new tissue. They can also be engineered to have controlled release properties, allowing for the localized and sustained delivery of bioactive molecules, growth factors, or antimicrobial agents to the wound site. BNCs can be used as scaffolds or matrices for bioprinting, enabling the fabrication of complex structures that closely resemble native tissue. BNC-based films, hydrogels, and dressings can serve as protective barriers, promoting an optimal wound healing environment and preventing infection. These materials can also be incorporated into advanced wound care products, such as smart dressings, which can monitor wound healing progress and provide real-time feedback to healthcare professionals. This review aims to provide a comprehensive overview of the current trends, advantages, challenges, and future directions in this rapidly evolving field. The current trends in the field are deliberated, including the incorporation of natural polymers, such as silk fibroin, hyaluronic acid, collagen, gelatin, chitosan/chitin, alginate, starch, bacterial cellulose, among others. These BNCs offer biocompatibility/biodegradability, enhanced mechanical strength, and the ability to promote cell adhesion and proliferation. However, crucial challenges such as biocompatibility optimization, mechanical property tuning, and regulatory approval need to be addressed. Furthermore, the future directions and emerging research areas are deliberated, including the development of biomimetic BNCs that mimic the native tissue microenvironment in terms of composition, structure, and bioactive cues. Furthermore, the integration of advanced fabrication techniques, such as 3D bioprinting and electrospinning, and the incorporation of nanoparticles and bioactive molecules hold promise for enhancing the therapeutic efficacy of BNCs in skin tissue repair and regeneration. This review aims to provide a comprehensive overview of the current trends, advantages, challenges, and future directions in the field of bionanocomposites for skin tissue repair and regeneration.
  • Review
    Citation Count: 0
    Self-healing materials in biomedicine and the circular economy
    (Royal Soc Chemistry, 2024) Venkateswaran, Meenakshi R.; Khosravi, Arezoo; Zarepour, Atefeh; Iravani, Siavash; Zarrabi, Ali; Genetik ve Biyomühendislik / Genetic and Bio-Engineering
    Self-healing (bio)materials represent a cornerstone in the transition towards a circular economy in healthcare. These materials possess the remarkable ability to autonomously repair damage, thereby extending the lifespan of medical devices, implants, sensors, wound dressings, and drug delivery systems. By extending the lifespan of biomedical products, they can significantly reduce waste generation and minimize the environmental impact associated with frequent replacement. In addition, the integration of self-healing properties into drug delivery systems can enhance their efficacy and reduce the need for frequent administration, resulting in a more sustainable healthcare system. Notably, self-healing polymers and hydrogels have the potential to improve the durability and lifespan of wound dressings, providing extended protection and support throughout the healing process. The development and implementation of self-healing biomaterials signify a shift towards a more environmentally conscious and resource-efficient healthcare sector. By adopting a circular approach, healthcare facilities can optimize the use of resources throughout the product lifecycle. This includes designing medical devices with self-healing capabilities, implementing efficient recycling systems, and promoting the development of new materials from recycled sources. Such an approach not only reduces the environmental footprint of the healthcare sector but also contributes to a more sustainable and resilient supply chain. The adoption of self-healing (bio)materials offers numerous benefits for the healthcare industry. These materials not only can reduce the environmental impact of medical practices by extending the lifecycle of products but also enhance patient safety and treatment outcomes. The integration of self-healing materials in the healthcare industry holds promise for supporting a more circular economy by extending the product lifespan, reducing waste generation, and fostering sustainable practices in medical settings. However, additional explorations are warranted to optimize the performance and stability of self-healing (bio)materials, ensuring their long-term effectiveness. One of the primary challenges in the adoption of self-healing materials is the cost associated with their production. Notably, the exploration of specific self-healing mechanisms will be crucial in expanding their applications. This review examines the intersection of self-healing materials, biomedicine, and the circular economy, focusing on the challenges, advantages, and future perspectives associated with their implementation. This review examines the intersection of self-healing materials, biomedicine, and the circular economy, focusing on the challenges, advantages, and future perspectives associated with their implementation.
  • Review
    Citation Count: 0
    MOFs and MOF-Based Composites as Next-Generation Materials for Wound Healing and Dressings
    (Wiley-v C H verlag Gmbh, 2024) Bigham, Ashkan; Islami, Negar; Khosravi, Arezoo; Zarepour, Atefeh; Iravani, Siavash; Zarrabi, Ali; Genetik ve Biyomühendislik / Genetic and Bio-Engineering
    In recent years, there has been growing interest in developing innovative materials and therapeutic strategies to enhance wound healing outcomes, especially for chronic wounds and antimicrobial resistance. Metal-organic frameworks (MOFs) represent a promising class of materials for next-generation wound healing and dressings. Their high surface area, pore structures, stimuli-responsiveness, antibacterial properties, biocompatibility, and potential for combination therapies make them suitable for complex wound care challenges. MOF-based composites promote cell proliferation, angiogenesis, and matrix synthesis, acting as carriers for bioactive molecules and promoting tissue regeneration. They also have stimuli-responsivity, enabling photothermal therapies for skin cancer and infections. Herein, a critical analysis of the current state of research on MOFs and MOF-based composites for wound healing and dressings is provided, offering valuable insights into the potential applications, challenges, and future directions in this field. This literature review has targeted the multifunctionality nature of MOFs in wound-disease therapy and healing from different aspects and discussed the most recent advancements made in the field. In this context, the potential reader will find how the MOFs contributed to this field to yield more effective, functional, and innovative dressings and how they lead to the next generation of biomaterials for skin therapy and regeneration. Recent advancements pertaining to the applications of MOFs and their composites for wound healing and dressings are deliberated, with the purpose of identifying knowledge gaps, evaluating challenges, and guiding future directions in the field. image
  • Article
    Citation Count: 0
    Electrogenic bacteria in microbial fuel cells: innovative approaches to sustainable wastewater treatment and bioelectricity production
    (Springernature, 2024) Lory, Hossein Shamsaldini; Khaleghi, Moj; Miroliaei, Mohammad Reza; Naghibi, Negin; Tehranian, Aref; Khosravi, Arezoo; Zarrabi, Ali; Genetik ve Biyomühendislik / Genetic and Bio-Engineering
    Microbial fuel cells (MFCs) offer a promising solution to address contemporary issues such as water scarcity, pollution, high electricity costs, and reliance on fossil fuels. By utilizing exoelectrogenic bacteria, MFCs can simultaneously purify water and generate electricity. This study investigated the potential for electricity production and wastewater treatment using exoelectrogenic bacteria isolated from urban wastewater in Kerman City. A two-chamber MFC with a 500 ml volume and a KCl salt bridge for proton transfer was employed. The microbial community effectively reduced chemical oxygen demand (COD) and biological oxygen demand (BOD) by 99% and 63%, respectively, and removed heavy metals from the wastewater. The highest voltage and current generated from the effluent were 330 mV and 1.825 mA, respectively. Among the 28 identified bacterial strains, five (Shewanella sp., Lysinibacillus sp., Bacillus sp., Enterobacter sp., and Acinetobacter sp.) were selected for further study. Shewanella sp. produced the highest voltage and current, reaching 230 mV and 0.016 mA, respectively. These findings underscore the significant potential of exoelectrogenic bacteria in advancing MFC technology for sustainable wastewater treatment and energy production.
  • Review
    Citation Count: 0
    Contribution of Autophagy to Epithelial Mesenchymal Transition Induction during Cancer Progression
    (Mdpi, 2024) Strippoli, Raffaele; Niayesh-Mehr, Reyhaneh; Adelipour, Maryam; Khosravi, Arezoo; Cordani, Marco; Zarrabi, Ali; Allameh, Abdolamir; Genetik ve Biyomühendislik / Genetic and Bio-Engineering
    Simple Summary This manuscript focuses on the complex relationships between autophagy and epithelial mesenchymal transition (EMT) in cancer. Autophagy, a cellular degradation process, and EMT, a mechanism where epithelial cells acquire mesenchymal features, both play significant roles in cancer development. This review aims to explore how these processes interact, particularly how autophagy impacts cancer cell fate during EMT. The findings from this study are expected to contribute to a better understanding of cancer biology and could potentially impact cancer treatment strategies, as both autophagy and EMT are considered targets for therapy.Abstract Epithelial Mesenchymal Transition (EMT) is a dedifferentiation process implicated in many physio-pathological conditions including tumor transformation. EMT is regulated by several extracellular mediators and under certain conditions it can be reversible. Autophagy is a conserved catabolic process in which intracellular components such as protein/DNA aggregates and abnormal organelles are degraded in specific lysosomes. In cancer, autophagy plays a controversial role, acting in different conditions as both a tumor suppressor and a tumor-promoting mechanism. Experimental evidence shows that deep interrelations exist between EMT and autophagy-related pathways. Although this interplay has already been analyzed in previous studies, understanding mechanisms and the translational implications of autophagy/EMT need further study. The role of autophagy in EMT is not limited to morphological changes, but activation of autophagy could be important to DNA repair/damage system, cell adhesion molecules, and cell proliferation and differentiation processes. Based on this, both autophagy and EMT and related pathways are now considered as targets for cancer therapy. In this review article, the contribution of autophagy to EMT and progression of cancer is discussed. This article also describes the multiple connections between EMT and autophagy and their implication in cancer treatment.
  • Review
    Citation Count: 0
    Biohybrid Micro/Nanorobots: Pioneering the Next Generation of Medical Technology
    (Wiley, 2024) Zarepour, Atefeh; Khosravi, Arezoo; Iravani, Siavash; Zarrabi, Ali; Genetik ve Biyomühendislik / Genetic and Bio-Engineering
    Biohybrid micro/nanorobots hold a great potential for advancing biomedical research. These tiny structures, designed to mimic biological organisms, offer a promising method for targeted drug delivery, tissue engineering, biosensing/imaging, and cancer therapy, among other applications. The integration of biology and robotics opens new possibilities for minimally invasive surgeries and personalized healthcare solutions. The key challenges in the development of biohybrid micro/nanorobots include ensuring biocompatibility, addressing manufacturing scalability, enhancing navigation and localization capabilities, maintaining stability in dynamic biological environments, navigating regulatory hurdles, and successfully translating these innovative technologies into clinical applications. Herein, the recent advancements, challenges, and future perspectives related to the biomedical applications of biohybrid micro/nanorobots are described. Indeed, this review sheds light on the cutting-edge developments in this field, providing researchers with an updated overview of the current potential of biohybrid micro/nanorobots in the realm of biomedical applications, and offering insights into their practical applications. Furthermore, it delves into recent advancements in the field of biohybrid micro/nanorobotics, providing a comprehensive analysis of the current state-of-the-art technologies and their future applications in the biomedical field. This review is about biohybrid micro/nanorobots, a class of micro/nanorobotics composed of a biological part and an artificial sector. It also explores recent advancements in biomedical applications of biohybrid micro/nanorobots by focusing on their potential usage in targeted drug delivery, tissue engineering, cancer therapy, and imaging-guided therapy. image
  • Book Part
    Citation Count: 0
    Mechanical Properties of Multifunctional Hydrogels
    (CRC Press, 2024) Sezen,S.; Bilici,Ç.; Zarepour,A.; Khosravi,A.; Zarrabi,A.; Mostafavi,E.; Genetik ve Biyomühendislik / Genetic and Bio-Engineering
    Hydrogels are 3D cross-linked polymeric networks with the ability to hold huge amounts of water that are applicable in several industrial and biotechnological research areas. Regarding the defined application, the performance of the hydrogels is strongly influenced by their mechanical properties. Therefore, there has been a great effort in the investigation of mechanical features of the hydrogels, from microscale to macroscale, to create desirable characteristics for any given application. To understand the mechanical behavior, it is important to address the theories for determining the characteristics of hydrogels and models for testing them. This chapter is mainly focused on the theoretical models and experimental methods to identify mechanical behavior of hydrogels. In detail, the models including rubber elasticity and viscoelasticity have been elucidated. In addition, experimental methods including stress-strain tests, creep and stress relaxation, cyclic deformations, and dynamic mechanical analysis have been explained. Besides, network models and strategies to alter the micro and macro structure of hydrogels, and material addition for tunning and controlling the mechanical features, by emphasizing the relationship of structure-activity, have been clarified. Finally, the mechanoresponsive hydrogels for biomedical applications are discussed. © 2024 José García-Torres, Carlos Alemán, and Ram K. Gupta.
  • Review
    Citation Count: 0
    3D and 4D printing of MXene-based composites: from fundamentals to emerging applications
    (Royal Soc Chemistry, 2024) Bigham, Ashkan; Zarepour, Atefeh; Khosravi, Arezoo; Iravani, Siavash; Zarrabi, Ali; Genetik ve Biyomühendislik / Genetic and Bio-Engineering
    The advent of three-dimensional (3D) and four-dimensional (4D) printing technologies has significantly improved the fabrication of advanced materials, with MXene-based composites emerging as a particularly promising class due to their exceptional electrical, mechanical, and chemical properties. This review explores the fundamentals of MXenes and their composites, examining their unique characteristics and the underlying principles of their synthesis and processing. We highlight the transformative potential of 3D and 4D printing techniques in tailoring MXene-based materials for a wide array of applications. In the field of tissue regeneration, MXene composites offer enhanced biocompatibility and mechanical strength, making them ideal for scaffolds and implants. For drug delivery, the high surface area and tunable surface chemistry of MXenes enable precise control over drug release profiles. In energy storage, MXene-based electrodes exhibit superior conductivity and capacity, paving the way for next-generation batteries and supercapacitors. Additionally, the sensitivity and selectivity of MXene composites make them excellent candidates for various (bio)sensing applications, from environmental monitoring to biomedical diagnostics. By integrating the dynamic capabilities of 4D printing, which introduces time-dependent shape transformations, MXene-based composites can further adapt to complex and evolving functional requirements. This review provides a comprehensive overview of the current state of research, identifies key challenges, and discusses future directions for the development and application of 3D and 4D printed MXene-based composites. Through this exploration, we aim to underscore the significant impact of these advanced materials and technologies on diverse scientific and industrial fields. This review highlights the developments in the 3D/4D printing of MXene-based composites, focusing on their application in tissue regeneration, drug delivery, sensing, and energy storage.
  • Review
    Citation Count: 0
    Biotin-functionalized nanoparticles: an overview of recent trends in cancer detection
    (Royal Soc Chemistry, 2024) Fathi-karkan, Sonia; Sargazi, Saman; Shojaei, Shirin; Farasati Far, Bahareh; Mirinejad, Shekoufeh; Cordani, Marco; Ghavami, Saeid; Genetik ve Biyomühendislik / Genetic and Bio-Engineering
    Electrochemical bio-sensing is a potent and efficient method for converting various biological recognition events into voltage, current, and impedance electrical signals. Biochemical sensors are now a common part of medical applications, such as detecting blood glucose levels, detecting food pathogens, and detecting specific cancers. As an exciting feature, bio-affinity couples, such as proteins with aptamers, ligands, paired nucleotides, and antibodies with antigens, are commonly used as bio-sensitive elements in electrochemical biosensors. Biotin-avidin interactions have been utilized for various purposes in recent years, such as targeting drugs, diagnosing clinically, labeling immunologically, biotechnology, biomedical engineering, and separating or purifying biomolecular compounds. The interaction between biotin and avidin is widely regarded as one of the most robust and reliable noncovalent interactions due to its high bi-affinity and ability to remain selective and accurate under various reaction conditions and bio-molecular attachments. More recently, there have been numerous attempts to develop electrochemical sensors to sense circulating cancer cells and the measurement of intracellular levels of protein thiols, formaldehyde, vitamin-targeted polymers, huwentoxin-I, anti-human antibodies, and a variety of tumor markers (including alpha-fetoprotein, epidermal growth factor receptor, prostate-specific Ag, carcinoembryonic Ag, cancer antigen 125, cancer antigen 15-3, etc.). Still, the non-specific binding of biotin to endogenous biotin-binding proteins present in biological samples can result in false-positive signals and hinder the accurate detection of cancer biomarkers. This review summarizes various categories of biotin-functional nanoparticles designed to detect such biomarkers and highlights some challenges in using them as diagnostic tools. Biotin-functionalized nanoparticles enhance cancer detection by targeting biotin receptors, which are overexpressed on cancer cells. This targeted approach improves imaging accuracy and efficacy in identifying cancerous tissues.
  • Review
    Citation Count: 0
    Synergistic applications of cyclodextrin-based systems and metal-organic frameworks in transdermal drug delivery for skin cancer therapy
    (Royal Soc Chemistry, 2024) Scattolin, Thomas; Tonon, Giovanni; Botter, Eleonora; Canale, Viviana Claudia; Hasanzadeh, Mahdi; Cuscela, Denise Maria; Zarrabi, Ali; Genetik ve Biyomühendislik / Genetic and Bio-Engineering
    This review article explores the innovative field of eco-friendly cyclodextrin-based coordination polymers and metal-organic frameworks (MOFs) for transdermal drug delivery in the case of skin cancer therapy. We critically examine the significant advancements in developing these nanocarriers, with a focus on their unique properties such as biocompatibility, targeted drug release, and enhanced skin permeability. These attributes are instrumental in addressing the limitations inherent in traditional skin cancer treatments and represent a paradigm shift towards more effective and patient-friendly therapeutic approaches. Furthermore, we discuss the challenges faced in optimizing the synthesis process for large-scale production while ensuring environmental sustainability. The review also emphasizes the immense potential for clinical applications of these nanocarriers in skin cancer therapy, highlighting their role in facilitating targeted, controlled drug release which minimizes systemic side effects. Future clinical applications could see these nanocarriers being customized to individual patient profiles, potentially revolutionizing personalized medicine in oncology. With further research and clinical trials, these nanocarriers hold the promise of transforming the landscape of skin cancer treatment. With this study, we aim to provide a comprehensive overview of the current state of research in this field and outline future directions for advancing the development and clinical application of these innovative nanocarriers. This review article explores the innovative field of eco-friendly cyclodextrin-based coordination polymers and metal-organic frameworks (MOFs) for transdermal drug delivery in the case of skin cancer therapy.