Khosravı, Arezoo
Loading...
Name Variants
Khosravi A.
Arezoo, Khosravı
Arezoo Khosravı
KHOSRAVI Arezoo
Khosravi Arezoo
Arezoo KHOSRAVI
Khosravı, A.
Khosravı Arezoo
KHOSRAVi Arezoo
Arezoo KHOSRAVi
A., Khosravı
Khosravi, A.
Khosravı, Arezoo
Khosravi, Arezoo
Arezoo Khosravi
Arezoo, Khosravı
Arezoo Khosravı
KHOSRAVI Arezoo
Khosravi Arezoo
Arezoo KHOSRAVI
Khosravı, A.
Khosravı Arezoo
KHOSRAVi Arezoo
Arezoo KHOSRAVi
A., Khosravı
Khosravi, A.
Khosravı, Arezoo
Khosravi, Arezoo
Arezoo Khosravi
Job Title
Dr.Öğr.Üyesi
Email Address
arezoo.khosravi@okan.edu.tr
Main Affiliation
Genetik ve Biyomühendislik / Genetic and Bio-Engineering
Status
Website
ORCID ID
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID

Scholarly Output
38
Articles
13
Citation Count
6
Supervised Theses
0
38 results
Scholarly Output Search Results
Now showing 1 - 10 of 38
Article Citation - WoS: 2Citation - Scopus: 2Nature-inspired healing: Biomimetic nanomaterials for advanced wound management(Elsevier, 2024) Sarrami-Foroushani, Elnaz; Yavari, Maryam; Zarepour, Atefeh; Khosravi, Arezoo; Iravani, Siavash; Zarrabi, Ali; Genetik ve Biyomühendislik / Genetic and Bio-EngineeringThis review explores the transformative potential of biomimetic nanomaterials in the realm of advanced wound management, focusing on their application in promoting healing of wound while preventing infections and/or real-time monitoring healing process. The intricate design of biomimetic nanomaterials allows for the targeted delivery of therapeutic agents, modulation of inflammatory responses, and promotion of tissue regeneration within the wound microenvironment. Despite their promising benefits, challenges such as complex design requirements, scalability issues, and long-term safety concerns need to be addressed to maximize the clinical utility of these innovative materials. By overcoming these challenges through interdisciplinary collaboration and technological advancements, the integration of biomimetic nanomaterials in wound management offers a promising avenue for personalized, efficient, and effective treatment strategies. Looking ahead, the future perspectives of biomimetic nanomaterials in advanced wound management hold immense potential for developing the field of wound care. By harnessing the regenerative properties, infection prevention capabilities, and smart real-time monitoring functionalities of biomimetic nanomaterials, healthcare providers can deliver tailor-made solutions that address the unique needs of individual patients and optimize healing outcomes. This review aims to provide insights into the challenges, opportunities, and future directions of utilizing biomimetic nano- materials for advanced wound management, shedding light on the transformative impact of these innovative materials in improving patient well-being and redefining the standards of care in wound healing practices.Review Citation - WoS: 1Citation - Scopus: 1Advancing paper-based sensors with MXenes and MOFs: exploring cutting-edge innovations(Royal Soc Chemistry, 2024) Larijani, Sepehr; Zarepour, Atefeh; Khosravi, Arezoo; Iravani, Siavash; Eskandari, Mahnaz; Zarrabi, Ali; Genetik ve Biyomühendislik / Genetic and Bio-EngineeringMXenes and metal-organic frameworks (MOFs) are emerging as promising materials for integration into paper-based sensors (PSs), offering unique properties that can enhance sensor performance in various applications. MXenes, with their high conductivity and large surface area, and MOFs, known for their tunable porosity and chemical functionalities, provide distinct advantages to PSs. By leveraging the exceptional properties of MXenes and MOFs, researchers can develop PSs with improved sensitivity, selectivity, and stability, paving the way for advanced sensing platforms with diverse capabilities in environmental monitoring, healthcare diagnostics, and beyond. However, challenges still exist for incorporating MXenes and MOFs into PSs, including sensitivity, stability, interference, and scalability. Addressing these challenges is crucial for optimizing sensor performance and reliability. Herein, recent developments pertaining to the applications of MXenes and MOFs in PSs are discussed, focusing on challenges and future perspectives. By examining the unique properties of these materials, exploring innovative sensor designs, and discussing potential solutions to current challenges, this review seeks to pave the way for the development of next-generation PSs with enhanced sensitivity, selectivity, and reliability.Review Citation - WoS: 9Citation - Scopus: 9Glycosylated nanoplatforms: From glycosylation strategies to implications and opportunities for cancer theranostics(Elsevier, 2024) Zare, Iman; Kiadeh, Shahrzad Zirak Hassan; Varol, Ayseguel; Varol, Tugba Oren; Varol, Mehmet; Sezen, Serap; Zarrabi, Ali; Genetik ve Biyomühendislik / Genetic and Bio-EngineeringGlycosylated nanoplatforms have emerged as promising tools in the field of cancer theranostics, integrating both therapeutic and diagnostic functionalities. These nanoscale platforms are composed of different materials such as lipids, polymers, carbons, and metals that can be modified with glycosyl moieties to enhance their targeting capabilities towards cancer cells. This review provides an overview of different modification strategies employed to introduce glycosylation onto nanoplatforms, including chemical conjugation, enzymatic methods, and bioorthogonal reactions. Furthermore, the potential applications of glycosylated nanoplatforms in cancer theranostics are discussed, focusing on their roles in drug delivery, imaging, and combination therapy. The ability of these nanoplatforms to selectively target cancer cells through specific interactions with overexpressed glycan receptors is highlighted, emphasizing their potential for enhancing efficacy and reducing the side effects compared to conventional therapies. In addition, the incorporation of diagnostic components onto the glycosylated nanoplatforms provided the capability of simultaneous imaging and therapy and facilitated the real-time monitoring of treatment response. Finally, challenges and future perspectives in the development and translation of glycosylated nanoplatforms for clinical applications are addressed, including scalability, biocompatibility, and regulatory considerations. Overall, this review underscores the significant progress made in the field of glycosylated nanoplatforms and their potential to revolutionize cancer theranostics.Review Citation - WoS: 16Citation - Scopus: 17Innovative approaches for cancer treatment: graphene quantum dots for photodynamic and photothermal therapies(Royal Soc Chemistry, 2024) Zarepour, Atefeh; Khosravi, Arezoo; Yuecel Ayten, Necla; cakir Hatir, Pinar; Iravani, Siavash; Zarrabi, Ali; Genetik ve Biyomühendislik / Genetic and Bio-EngineeringGraphene quantum dots (GQDs) hold great promise for photodynamic and photothermal cancer therapies. Their unique properties, such as exceptional photoluminescence, photothermal conversion efficiency, and surface functionalization capabilities, make them attractive candidates for targeted cancer treatment. GQDs have a high photothermal conversion efficiency, meaning they can efficiently convert light energy into heat, leading to localized hyperthermia in tumors. By targeting the tumor site with laser irradiation, GQD-based nanosystems can induce selective cancer cell destruction while sparing healthy tissues. In photodynamic therapy, light-sensitive compounds known as photosensitizers are activated by light of specific wavelengths, generating reactive oxygen species that induce cancer cell death. GQD-based nanosystems can act as excellent photosensitizers due to their ability to absorb light across a broad spectrum; their nanoscale size allows for deeper tissue penetration, enhancing the therapeutic effect. The combination of photothermal and photodynamic therapies using GQDs holds immense potential in cancer treatment. By integrating GQDs into this combination therapy approach, researchers aim to achieve enhanced therapeutic efficacy through synergistic effects. However, biodistribution and biodegradation of GQDs within the body present a significant hurdle to overcome, as ensuring their effective delivery to the tumor site and stability during treatment is crucial for therapeutic efficacy. In addition, achieving precise targeting specificity of GQDs to cancer cells is a challenging task that requires further exploration. Moreover, improving the photothermal conversion efficiency of GQDs, controlling reactive oxygen species generation for photodynamic therapy, and evaluating their long-term biocompatibility are all areas that demand attention. Scalability and cost-effectiveness of GQD synthesis methods, as well as obtaining regulatory approval for clinical applications, are also hurdles that need to be addressed. Further exploration of GQDs in photothermal and photodynamic cancer therapies holds promise for advancements in targeted drug delivery, personalized medicine approaches, and the development of innovative combination therapies. The purpose of this review is to critically examine the current trends and advancements in the application of GQDs in photothermal and photodynamic cancer therapies, highlighting their potential benefits, advantages, and future perspectives as well as addressing the crucial challenges that need to be overcome for their practical application in targeted cancer therapy. Recent advancements pertaining to the application of GQD-based nanosystems in photothermal and photodynamic cancer therapies are discussed, highlighting crucial challenges, advantages, and future perspectives.Review Citation - WoS: 3Citation - Scopus: 3Next-generation nitrogen fixation strategy: empowering electrocatalysis with MXenes(Royal Soc Chemistry, 2024) Iravani, Siavash; Zarepour, Atefeh; Khosravi, Arezoo; Varma, Rajender S.; Zarrabi, Ali; Genetik ve Biyomühendislik / Genetic and Bio-EngineeringIn recent years, the development of sustainable and cost-effective electrocatalysts for nitrogen (N2) fixation has garnered significant attention, leading to the introduction of next-generation materials with electrocatalytic properties. Among the most interesting types of these materials, MXenes and their composite forms with their unique properties like high electrochemical activity, large surface area, tunable properties, excellent electrical conductivity, chemical stability, and abundant transition metals have been widely explored. These properties make MXenes promising candidates for various electrochemical reactions, including water splitting, oxygen reduction, hydrogen evolution, N2 activation and reduction, among others. The interface of these materials could be engineered with other entities which can serve as a promising tool for sustainable production of ammonia (NH3) to address the global nitrogen-related challenges. Moreover, optimizing the interfaces between them and reactants is another way to achieve high catalytic activity, selectivity, and stability. Accordingly, this review aims to offer a comprehensive overview of the current state of research in the field of electrocatalytic N2 fixation deploying MXenes and their composites. The highlights comprise progress made in understanding the catalytic properties and unique performances of MXenes for N2 fixation, as well as challenges that persist in this context and the possible solutions that could be implemented to circumvent these challenges in the future. MXenes offer environmentally friendly alternatives to conventional N2 fixation methods via potential optimization of their catalytic activity and circumventing some synthesis challenges.Article Citation - WoS: 1Citation - Scopus: 1Development of pH and thermo-responsive smart niosomal carriers for delivery of gemcitabine to the breast cancer cells(Springernature, 2024) Ghalehshahi, Saeid Shirzadi; Saharkhiz, Shaghayegh; Naderi, Nazanin; Nasri, Negar; Saharkhiz, Shiva; Zarepour, Atefeh; Zarrabi, Ali; Genetik ve Biyomühendislik / Genetic and Bio-EngineeringThe utilization of intelligent drug carriers in cancer therapy has emerged as a transformative paradigm in modern oncology. These advanced drug delivery systems exploit the distinctive characteristics of cancer cells and their surrounding microenvironment to attain precise and targeted drug release at the tumor site. In this study, we aim to introduce a novel niosome formulation endowed with dual-responsive properties, pH, and thermo-sensitivity, to enhance drug release precisely within the intended target site. Therefore, thin-film method was used for the fabrication of niosomes, incorporating dipalmitoylphosphatidylcholine (DPPC), as thermoresponsive phospholipid, and citraconic anhydride, as pH-responsive linker. The fabricated niosomes were evaluated through physicochemical analysis using Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), and scanning electron microscopy (SEM). Additionally, the entrapment efficiency (EE%) and drug release pattern of gemcitabine (GEM) were quantified at different conditions using UV-Visible spectroscopy. The bioactivity of these niosomes was also evaluated via cytotoxicity assay and flow cytometry. Results of physicochemical analysis verified the successful fabrication of spherical nanoparticles, with a size range of about 100-150 nm and a neutral surface charge. Furthermore, the fabricated niosomes showed sensitivity to acidic pH (6.5) and temperature exceeding the transition temperature (Tc) of the DPPC (41.5 degrees C). Importantly, the drug release profile indicated about 10-17% enhancement in drug release for the dual-stimuli platform in comparison to the single-stimuli ones. The cytotoxicity assay and flow cytometry analysis demonstrated an approximate 10% increase in cytotoxicity and about a 2.5-fold rise in apoptosis induction for the dual-stimuli responsive platform in contrast to the free drug. In conclusion, this dual-stimuli responsive nanocarrier presents a promising strategy to enhance the specificity and efficacy of cancer chemotherapy while simultaneously reducing the adverse side effects experienced by patients.Article Citation - WoS: 2Citation - Scopus: 3Synergistic advancements: Exploring MXene/graphene oxide and MXene/ reduced graphene oxide composites for next-generation applications(Elsevier, 2024) Iravani, Siavash; Zarepour, Atefeh; Zare, Ehsan Nazarzadeh; Makvandi, Pooyan; Khosravi, Arezoo; Zarrabi, Ali; Genetik ve Biyomühendislik / Genetic and Bio-EngineeringThe exploration of MXene-graphene oxide (GO) and MXene-reduced GO (rGO) composites represents a significant leap forward in the development of advanced materials for next-generation applications. This review delves into the synergistic properties of MXene and GO, highlighting their combined potential to develop various technological fields. MXenes, with their unique two-dimensional structure and exceptional electrical conductivity, coupled with the remarkable mechanical strength and flexibility of GO, create composites with enhanced performance characteristics. These materials exhibit superior electrochemical properties, making them ideal candidates for energy storage devices such as supercapacitors and batteries. Additionally, their excellent thermal and mechanical properties open new avenues in the fields of electronics, sensors, and catalysis. This review seeks to explore the specific areas where MXene-(r)GO composites demonstrate exceptional promise, such as energy storage, sensing technologies, electromagnetic interference shielding, visible/infrared camouflages, and advanced materials development. These composites offer a promising pathway to address the growing demands for high-performance, multifunctional materials in various industrial sectors. This review aims to provide insights into the fundamental mechanisms driving the enhanced properties of MXene-(r)GO composites and to inspire further research and development in this exciting area of material science.Article Citation - WoS: 8Citation - Scopus: 10Sustainable synthesis: natural processes shaping the nanocircular economy(Royal Soc Chemistry, 2024) Khosravi, Arezoo; Zarepour, Atefeh; Iravani, Siavash; Varma, Rajender S.; Zarrabi, Ali; Genetik ve Biyomühendislik / Genetic and Bio-EngineeringSustainable synthesis in nano domain refers to the development of nanomaterials through deployment of natural processes and principles to minimize the use of hazardous materials and reduce the generation of waste. This method aims to mitigate the environmental impact associated with traditional synthesis methods wherein natural processes, such as biomineralization and self-assembly, offer valuable insights into the nanocircular economy (NE) thus creating numerous benefits. Firstly, it reduces the environmental footprint of nanotechnology by minimizing energy consumption and waste generation. Secondly, it promotes the efficient use of resources by incorporating principles of recycling and reusability. By mimicking natural processes, various nanomaterials can be created, which are biocompatible, biodegradable, and less harmful to the environment. However, challenges such as scale-up, cost, regulatory frameworks, and material selection ought to be addressed to ensure their widespread adoption. The prospects for sustainable synthesis in the NE are promising, with potential advancements in advanced materials, and the integration of circular economy concepts into nanomedicine, and environmental appliances; its future lies in bioinspired synthesis, adherence to green chemistry principles, waste recycling and up-cycling, energy-efficient techniques, life cycle assessment (LCA), and multi-disciplinary collaborations. This review seeks to contribute to the existing knowledge and understanding of sustainable synthesis and its impact on shaping eco-friendlier and resource-efficient NE by describing the methodology involved and discuss the benefits, challenges, and future opportunities emphasizing the importance of sustainability and responsible practices in development of nanomaterials. This perspective aims to shed light on the transformative potential of sustainable synthesis in guiding the transition towards circular economy conceptions in the nanotechnology domain.Article Citation - WoS: 5Citation - Scopus: 6MXene/zeolitic imidazolate framework (ZIF) composites: A perspective on their emerging applications(Elsevier, 2024) Iravani, Siavash; Zare, Ehsan Nazarzadeh; Zarrabi, Ali; Khosravi, Arezoo; Makvandi, Pooyan; Genetik ve Biyomühendislik / Genetic and Bio-EngineeringMXene/zeolitic imidazolate framework (ZIF) composites represent a rapidly growing area of research in the field of energy storage, catalysis, sensing, flexible electronics, microwave/electromagnetic wave absorption, biomedicine, and environmental remediation/water treatment. The integration of MXene and ZIFs in composite materials has led to develop highly sensitive and selective (bio)sensing platforms, enabling advances in biomedicine/healthcare, environmental monitoring, and industrial safety. MXene/ZIF composites showcase exceptional catalytic activity for a wide range of chemical transformations. Their exceptional adsorption capacity, selectivity, membrane integration, regeneration capabilities, and antibacterial properties make them invaluable assets in tackling water treatment challenges. The combination of MXene's conductivity and ZIF's dielectric properties, along with their unique morphological features, results in enhanced microwave absorption capabilities. Furthermore, while the biomedical applications of MXene/ZIF composites are still in the early stages of exploration, the combination of their unique properties provides a platform for innovative solutions in drug delivery, cancer nanotheranostics, bioimaging, tissue engineering, and biosensing. This article aims to present a comprehensive overview of the research progress in MXene/ZIF composites, focusing on current trends, important challenges, and future perspectives.Review Citation - WoS: 2Citation - Scopus: 2Advancements in MXenes and mechanochemistry: exploring new horizons and future applications(Royal Society of Chemistry, 2024) Iravani, S.; Zarepour, A.; Nazarzadeh Zare, E.; Makvandi, P.; Khosravi, A.; Varma, R.S.; Zarrabi, A.; Genetik ve Biyomühendislik / Genetic and Bio-EngineeringMXenes, a class of two-dimensional (2D) materials derived from transition metal carbides, nitrides, and carbonitrides, have garnered significant attention due to their unique properties and potential applications in various fields, including energy storage, catalysis, and electronics. Mechanochemistry, the study of chemical reactions driven by mechanical forces, offers a novel approach to synthesize and manipulate MXenes, enhancing their properties and expanding their functional applications. This review explores the intersection of MXenes and mechanochemistry, highlighting recent advancements in the mechanochemical synthesis of MXenes and their derivatives. We discuss the mechanisms underlying the mechanochemical processes, including the role of shear forces, ball milling, and other mechanical techniques in facilitating the exfoliation and functionalization of MXenes. Furthermore, we examine the impact of mechanochemical methods on the structural integrity, surface chemistry, and electronic properties of MXenes, which are crucial for their performance in applications such as supercapacitors, batteries, and sensors. This review also addresses the challenges and limitations associated with mechanochemical approaches, including scalability and reproducibility, while proposing future directions for research in this promising field. By integrating mechanochemistry with MXene research, we aim to provide insights into innovative strategies for the development of advanced materials that can meet the demands of next-generation technologies. This synthesis of knowledge not only underscores the versatility of MXenes but also emphasizes the transformative potential of mechanochemistry in materials science. © 2024 RSC.