On the prediction of clusters for adverse reactions and allergies on antibiotics for children to improve biomedical decision making
dc.authorscopusid | 6505872114 | |
dc.authorscopusid | 8605567300 | |
dc.authorscopusid | 57185444400 | |
dc.authorscopusid | 23396282000 | |
dc.contributor.author | Yildirim,P. | |
dc.contributor.author | Majnarić,L. | |
dc.contributor.author | Ekmekci,O.I. | |
dc.contributor.author | Holzinger,A. | |
dc.date.accessioned | 2024-05-25T12:31:17Z | |
dc.date.available | 2024-05-25T12:31:17Z | |
dc.date.issued | 2013 | |
dc.department | Okan University | en_US |
dc.department-temp | Yildirim P., Department of Computer Engineering, Faculty of Engineering and Architecture, Okan University, Istanbul, Turkey; Majnarić L., School of Medicine, University J.J. Strossmayer Osijek, 31 000, Osijek, Croatia; Ekmekci O.I., Department of Computer Engineering, Faculty of Engineering and Architecture, Okan University, Istanbul, Turkey; Holzinger A., Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, A-8036 Graz, Austria | en_US |
dc.description.abstract | In this paper, we report on a study to discover hidden patterns in survey results on adverse reactions and allergy (ARA) on antibiotics for children. Antibiotics are the most commonly prescribed drugs in children and most likely to be associated with adverse reactions. Record on adverse reactions and allergy from antibiotics considerably affect the prescription choices. We consider this a biomedical decision problem and explore hidden knowledge in survey results on data extracted from the health records of children, from the Health Center of Osijek, Eastern Croatia. We apply the K-means algorithm to the data in order to generate clusters and evaluate the results. As a result, some antibiotics form their own clusters. Consequently, medical professionals can investigate these clusters, thus gaining useful knowledge and insight into this data for their clinical studies. © 2013 IFIP International Federation for Information Processing. | en_US |
dc.identifier.citation | 0 | |
dc.identifier.doi | 10.1007/978-3-642-40511-2_31 | |
dc.identifier.endpage | 445 | en_US |
dc.identifier.isbn | 978-364240510-5 | |
dc.identifier.issn | 1611-3349 | |
dc.identifier.scopus | 2-s2.0-84885730612 | |
dc.identifier.scopusquality | Q3 | |
dc.identifier.startpage | 431 | en_US |
dc.identifier.uri | https://doi.org/10.1007/978-3-642-40511-2_31 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14517/2274 | |
dc.identifier.volume | 8127 LNCS | en_US |
dc.language.iso | en | |
dc.relation.ispartof | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) -- IFIP WG 8.4, 8.9, TC 5 International Cross-Domain Conference on Availability, Reliability, and Security in Information Systems and HCI, CD-ARES 2013 -- 2 September 2013 through 6 September 2013 -- Regensburg -- 100102 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Adverse reactions and allergy (ARA) | en_US |
dc.subject | biomedical data mining | en_US |
dc.subject | k-means algorithm | en_US |
dc.subject | knowledge discovery | en_US |
dc.title | On the prediction of clusters for adverse reactions and allergies on antibiotics for children to improve biomedical decision making | en_US |
dc.type | Conference Object | en_US |
dspace.entity.type | Publication |