Metric Space and Calculus of Type-2 Interval-Valued Functions

dc.authorscopusid57213152433
dc.authorscopusid58380343900
dc.authorscopusid9043417500
dc.authorscopusid23028598900
dc.authorscopusid57004332200
dc.contributor.authorSalahshour, Soheıl
dc.contributor.authorDas,M.
dc.contributor.authorAlam,S.
dc.contributor.authorSalahshour,S.
dc.contributor.authorMondal,S.P.
dc.date.accessioned2024-10-15T20:23:45Z
dc.date.available2024-10-15T20:23:45Z
dc.date.issued2024
dc.departmentOkan Universityen_US
dc.department-tempRahaman M., Department of Mathematics, Indian Institute of Engineering Science and Technology, Shibpur, West Bengal, Howrah, 711103, India, Department of Mathematics, School of Liberal Arts and Sciences, Mohan Babu University, Andhra Pradesh, Tirupati, 517102, India; Das M., Department of Mathematics, Indian Institute of Engineering Science and Technology, Shibpur, West Bengal, Howrah, 711103, India, School of Applied Science and Humanities, Haldia Institute of Technology, West Bengal, Haldia, 721657, India; Alam S., Department of Mathematics, Indian Institute of Engineering Science and Technology, Shibpur, West Bengal, Howrah, 711103, India; Salahshour S., Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, Turkey, Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey; Mondal S.P., Department of Applied Mathematics, Maulana Abul Kalam Azad University of Technology, West Bengal, Haringhata, West Bengal, Nadia, 741249, Indiaen_US
dc.description.abstractThis paper attempts an extensive study on metric space and calculus under Type 2 interval uncertainty. Type 2 interval generalizes interval uncertainty considering both ends of the interval number to be imprecise. Type 2 interval philosophy was introduced in the literature with optimization perspectives. We prioritize the study of Type 2 interval-ruled dynamical systems. The concerns necessitate an extensive introduction of metric space and calculus for Type 2 interval-valued functions. We investigate several fundamental properties of metric space in the contemporary of Type 2 interval setting. After significant findings in differential calculus using generalized Hukuhara difference of Type 2 interval numbers, a detailed and novel manifestation of integral calculus including Riemann and Lebesgue senses is also done in this paper. We also provide hints for possible mathematical modelings of real-world scenarios using Type 2 interval-ruled uncertain decision realm. © 2024 World Scientific Publishing Company.en_US
dc.identifier.citation0
dc.identifier.doi10.1142/S1752890924500181
dc.identifier.issn1752-8909
dc.identifier.scopus2-s2.0-85203158054
dc.identifier.scopusqualityQ4
dc.identifier.urihttps://doi.org/10.1142/S1752890924500181
dc.identifier.urihttps://hdl.handle.net/20.500.14517/6893
dc.institutionauthorSalahshour, Soheıl
dc.language.isoen
dc.publisherWorld Scientificen_US
dc.relation.ispartofJournal of Uncertain Systemsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectGeneralized Hukuhara differenceen_US
dc.subjectgeneralized Hukuhara differentiabilityen_US
dc.subjectLebesgue integrabilityen_US
dc.subjectmetric spaceen_US
dc.subjectRiemann integrabilityen_US
dc.titleMetric Space and Calculus of Type-2 Interval-Valued Functionsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf5ba517c-75fb-4260-af62-01c5f5912f3d
relation.isAuthorOfPublication.latestForDiscoveryf5ba517c-75fb-4260-af62-01c5f5912f3d

Files