The effect of initial pressure and temperature on the flow in a three-dimensional cavity filled with paraffin/Cu nanostructure with a wavy lower wall and a movable upper wall using molecular dynamics simulation
No Thumbnail Available
Date
2024
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier B.V.
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Phase change materials (PCMs) are very suitable for the storage of thermal energy. Heat transfer plays a crucial role in many important industrial processes in today's industrial environment. Thus, it is crucial to examine and comprehend this occurrence properly. This work uses molecular dynamic simulation to examine the effect of initial pressure (IP) and temperature (Temp) on the thermal efficiency of phase change materials inside a three-dimensional cavity. The hollow contains paraffin/Cu nanoparticles and has a bottom wall with a wavy shape and an upper wall that can be adjusted. The results of the equilibration stage indicated that the kinetic and potential energies converge to 2100 eV and -95472.50 eV after 10 ns. Next, the results show that increasing IP resulted in the reduction of maximum velocity and Temp, which decreased from 0.0099 Å/ps and 898 K to 0.0090 Å/ps and 888 K. Furthermore, the results show that by increasing IP, the heat flux and thermal conductivity decrease from 9.95 W/m2 and 1.45 W/m.K to 8.89 W/m2 and 1.26 W/m.K. Conversely, as the initial Temp rose from 300 to 350 K, so did the velocity (0.0125 Å/ps) and Temp (990 K). Furthermore, the thermal conductivity and heat flux increased to 1.69 W/mK and 11.25 W/m2, respectively. This study reveals how molecular dynamics simulations provide insights into the effects of initial pressure and temperature on the flow and thermal behavior of a paraffin/copper nanostructure. The findings improve understanding of nanofluid and phase change material behavior, aiding the design of more efficient PCM-based systems for thermal energy storage and heat transfer applications. In general, the results of this research illuminate the complex relationship among IP, Temp, and thermal properties of phase change materials. This knowledge is of great significance as it can guide the formulation of novel approaches to enhance the thermal efficiency of these materials in practical applications. © 2024 The Author(s)
Description
Keywords
Heat flux, Initial pressure, Molecular dynamics simulation, Phase change material, Temperature, Thermal conductivity
Turkish CoHE Thesis Center URL
Fields of Science
Citation
0
WoS Q
Scopus Q
Q1
Source
International Journal of Thermofluids
Volume
24