A Fuzzy Fractional Power Series Approximation and Taylor Expansion for Solving Fuzzy Fractional Differential Equation

dc.authorscopusid57212528544
dc.authorscopusid58075145600
dc.authorscopusid57213152433
dc.authorscopusid23028598900
dc.authorscopusid57004332200
dc.contributor.authorSingh,P.
dc.contributor.authorSalahshour, Soheıl
dc.contributor.authorRahaman,M.
dc.contributor.authorSalahshour,S.
dc.contributor.authorMondal,S.P.
dc.date.accessioned2024-05-25T12:18:33Z
dc.date.available2024-05-25T12:18:33Z
dc.date.issued2024
dc.departmentOkan Universityen_US
dc.department-tempSingh P., Department of Applied Sciences and Humanities, Faculty of Engineering and Technology, Parul University, Gujarat, Vadodara, 391760, India; Gazi K.H., Department of Applied Mathematics, Maulana Abul Kalam Azad University of Technology, West Bengal, West Bengal, Nadia, Haringhata 741249, India; Rahaman M., Department of Mathematics, Indian Institute of Engineering Science and Technology, Shibpur, West Bengal, Howrah, 711103, India; Salahshour S., Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, Turkey, Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey, Faculty of Science and Letters, Piri Reis University, Istanbul, Tuzla, Turkey; Mondal S.P., Department of Applied Mathematics, Maulana Abul Kalam Azad University of Technology, West Bengal, West Bengal, Nadia, Haringhata 741249, Indiaen_US
dc.description.abstractFuzzy fractional differential has the strength to capture the senses of memory and uncertainty simultaneously involved in dynamical systems. However, a solution for fuzzy fractional differential equations is not always found regularly. This paper discusses a numerical solution approach for the fuzzy fractional differential equation using power series approximation with a fuzzy fractional counterpart of Taylor's theorem. Caputo's definition of the fractional derivative and generalized Hukuhara difference are used to describe the fuzzy differential equation in this paper. Utilization of the generalized Hukuhara difference for the fuzzy valued function ensures the uniqueness and boundedness of the fuzzy solution in parametric form. © 2024 The Author(s)en_US
dc.identifier.citation3
dc.identifier.doi10.1016/j.dajour.2024.100402
dc.identifier.issn2772-6622
dc.identifier.scopus2-s2.0-85183484460
dc.identifier.scopusqualityQ3
dc.identifier.urihttps://doi.org/10.1016/j.dajour.2024.100402
dc.identifier.urihttps://hdl.handle.net/20.500.14517/1721
dc.identifier.volume10en_US
dc.institutionauthorSalahshour, Soheıl
dc.institutionauthorSalahshour S.
dc.language.isoen
dc.publisherElsevier Inc.en_US
dc.relation.ispartofDecision Analytics Journalen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectDynamical systemsen_US
dc.subjectFuzzy Caputo fractional derivativeen_US
dc.subjectFuzzy fractional differential equationen_US
dc.subjectFuzzy fractional Taylor's theoremen_US
dc.subjectPower series approximationen_US
dc.titleA Fuzzy Fractional Power Series Approximation and Taylor Expansion for Solving Fuzzy Fractional Differential Equationen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf5ba517c-75fb-4260-af62-01c5f5912f3d
relation.isAuthorOfPublication.latestForDiscoveryf5ba517c-75fb-4260-af62-01c5f5912f3d

Files