A comparative noise robustness study of tree representations for attribute profile construction
dc.authorwosid | Lefevre, Sebastien/S-9444-2017 | |
dc.authorwosid | Dalla Mura, Mauro/AAA-1938-2020 | |
dc.authorwosid | Aptoula, Erchan/AAI-1070-2020 | |
dc.contributor.author | Koc, Safak Guner | |
dc.contributor.author | Aptoula, Erchan | |
dc.contributor.author | Bosilj, Petra | |
dc.contributor.author | Damodaran, Bharath Bhushan | |
dc.contributor.author | Dalla Mura, Mauro | |
dc.contributor.author | Lefevre, Sebastien | |
dc.date.accessioned | 2024-10-15T20:21:12Z | |
dc.date.available | 2024-10-15T20:21:12Z | |
dc.date.issued | 2017 | |
dc.department | Okan University | en_US |
dc.department-temp | [Koc, Safak Guner] Okan Univ, Mekatron Muh Bol, Istanbul, Turkey; [Aptoula, Erchan] Gebze Tekn Univ, Bilisim Teknol Enstitusu, Kocaeli, Turkey; [Bosilj, Petra] Univ Lincoln, Collge Sci, Lincoln, England; [Damodaran, Bharath Bhushan; Lefevre, Sebastien] Univ Bretagne Sud, IRISA, Vannes, France; [Dalla Mura, Mauro] Grenoble INP, Dept Image & Signal, Grenoble, France | en_US |
dc.description.abstract | Morphological attribute profiles are among the most prominent spatial-spectral pixel description tools. They can be calculated efficiently from tree based representations of an image. Although mostly implemented with inclusion trees (i.e. component trees and tree of shapes), attribute profiles have been recently adapted to partitioning trees, and specifically alpha- and omega-trees. Partitioning trees constitute a more flexible option especially when dealing with multivariate data. This work explores the noise robustness of the aforementioned major tree types in terms of pixel classification performance of the resulting attribute profiles, and presents our preliminary findings that support the use of partitioning trees as a basis for attribute profile construction. | en_US |
dc.description.woscitationindex | Conference Proceedings Citation Index - Science | |
dc.identifier.citation | 3 | |
dc.identifier.doi | [WOS-DOI-BELIRLENECEK-98] | |
dc.identifier.isbn | 9781509064946 | |
dc.identifier.issn | 2165-0608 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14517/6613 | |
dc.identifier.wos | WOS:000413813100023 | |
dc.language.iso | tr | |
dc.publisher | Ieee | en_US |
dc.relation.ispartof | 25th Signal Processing and Communications Applications Conference (SIU) -- MAY 15-18, 2017 -- Antalya, TURKEY | en_US |
dc.relation.ispartofseries | Signal Processing and Communications Applications Conference | |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | attribute profiles | en_US |
dc.subject | partitioning trees | en_US |
dc.subject | alpha-tree | en_US |
dc.subject | omega-tree | en_US |
dc.subject | hyperspectral images | en_US |
dc.title | A comparative noise robustness study of tree representations for attribute profile construction | en_US |
dc.type | Conference Object | en_US |
dspace.entity.type | Publication |