A comparative noise robustness study of tree representations for attribute profile construction

dc.authorwosidLefevre, Sebastien/S-9444-2017
dc.authorwosidDalla Mura, Mauro/AAA-1938-2020
dc.authorwosidAptoula, Erchan/AAI-1070-2020
dc.contributor.authorKoc, Safak Guner
dc.contributor.authorAptoula, Erchan
dc.contributor.authorBosilj, Petra
dc.contributor.authorDamodaran, Bharath Bhushan
dc.contributor.authorDalla Mura, Mauro
dc.contributor.authorLefevre, Sebastien
dc.date.accessioned2024-10-15T20:21:12Z
dc.date.available2024-10-15T20:21:12Z
dc.date.issued2017
dc.departmentOkan Universityen_US
dc.department-temp[Koc, Safak Guner] Okan Univ, Mekatron Muh Bol, Istanbul, Turkey; [Aptoula, Erchan] Gebze Tekn Univ, Bilisim Teknol Enstitusu, Kocaeli, Turkey; [Bosilj, Petra] Univ Lincoln, Collge Sci, Lincoln, England; [Damodaran, Bharath Bhushan; Lefevre, Sebastien] Univ Bretagne Sud, IRISA, Vannes, France; [Dalla Mura, Mauro] Grenoble INP, Dept Image & Signal, Grenoble, Franceen_US
dc.description.abstractMorphological attribute profiles are among the most prominent spatial-spectral pixel description tools. They can be calculated efficiently from tree based representations of an image. Although mostly implemented with inclusion trees (i.e. component trees and tree of shapes), attribute profiles have been recently adapted to partitioning trees, and specifically alpha- and omega-trees. Partitioning trees constitute a more flexible option especially when dealing with multivariate data. This work explores the noise robustness of the aforementioned major tree types in terms of pixel classification performance of the resulting attribute profiles, and presents our preliminary findings that support the use of partitioning trees as a basis for attribute profile construction.en_US
dc.description.woscitationindexConference Proceedings Citation Index - Science
dc.identifier.citation3
dc.identifier.doi[WOS-DOI-BELIRLENECEK-98]
dc.identifier.isbn9781509064946
dc.identifier.issn2165-0608
dc.identifier.urihttps://hdl.handle.net/20.500.14517/6613
dc.identifier.wosWOS:000413813100023
dc.language.isotr
dc.publisherIeeeen_US
dc.relation.ispartof25th Signal Processing and Communications Applications Conference (SIU) -- MAY 15-18, 2017 -- Antalya, TURKEYen_US
dc.relation.ispartofseriesSignal Processing and Communications Applications Conference
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectattribute profilesen_US
dc.subjectpartitioning treesen_US
dc.subjectalpha-treeen_US
dc.subjectomega-treeen_US
dc.subjecthyperspectral imagesen_US
dc.titleA comparative noise robustness study of tree representations for attribute profile constructionen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files