A comparative noise robustness study of tree representations for attribute profile construction

dc.authorwosid Lefevre, Sebastien/S-9444-2017
dc.authorwosid Dalla Mura, Mauro/AAA-1938-2020
dc.authorwosid Aptoula, Erchan/AAI-1070-2020
dc.contributor.author Koc, Safak Guner
dc.contributor.author Aptoula, Erchan
dc.contributor.author Bosilj, Petra
dc.contributor.author Damodaran, Bharath Bhushan
dc.contributor.author Dalla Mura, Mauro
dc.contributor.author Lefevre, Sebastien
dc.date.accessioned 2024-10-15T20:21:12Z
dc.date.available 2024-10-15T20:21:12Z
dc.date.issued 2017
dc.department Okan University en_US
dc.department-temp [Koc, Safak Guner] Okan Univ, Mekatron Muh Bol, Istanbul, Turkey; [Aptoula, Erchan] Gebze Tekn Univ, Bilisim Teknol Enstitusu, Kocaeli, Turkey; [Bosilj, Petra] Univ Lincoln, Collge Sci, Lincoln, England; [Damodaran, Bharath Bhushan; Lefevre, Sebastien] Univ Bretagne Sud, IRISA, Vannes, France; [Dalla Mura, Mauro] Grenoble INP, Dept Image & Signal, Grenoble, France en_US
dc.description.abstract Morphological attribute profiles are among the most prominent spatial-spectral pixel description tools. They can be calculated efficiently from tree based representations of an image. Although mostly implemented with inclusion trees (i.e. component trees and tree of shapes), attribute profiles have been recently adapted to partitioning trees, and specifically alpha- and omega-trees. Partitioning trees constitute a more flexible option especially when dealing with multivariate data. This work explores the noise robustness of the aforementioned major tree types in terms of pixel classification performance of the resulting attribute profiles, and presents our preliminary findings that support the use of partitioning trees as a basis for attribute profile construction. en_US
dc.description.woscitationindex Conference Proceedings Citation Index - Science
dc.identifier.citationcount 3
dc.identifier.isbn 9781509064946
dc.identifier.issn 2165-0608
dc.identifier.uri https://hdl.handle.net/20.500.14517/6613
dc.identifier.wos WOS:000413813100023
dc.language.iso tr
dc.publisher Ieee en_US
dc.relation.ispartof 25th Signal Processing and Communications Applications Conference (SIU) -- MAY 15-18, 2017 -- Antalya, TURKEY en_US
dc.relation.ispartofseries Signal Processing and Communications Applications Conference
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject attribute profiles en_US
dc.subject partitioning trees en_US
dc.subject alpha-tree en_US
dc.subject omega-tree en_US
dc.subject hyperspectral images en_US
dc.title A comparative noise robustness study of tree representations for attribute profile construction en_US
dc.type Conference Object en_US
dc.wos.citedbyCount 3
dspace.entity.type Publication

Files