An Artificial Deep Neural Network Approach for the Computer Epidemic Virus Model

dc.authorscopusid 56184182600
dc.authorscopusid 58677480900
dc.authorscopusid 60172833300
dc.authorscopusid 57203870179
dc.authorscopusid 23028598900
dc.contributor.author sabir, Z.
dc.contributor.author Bano, A.
dc.contributor.author Banaras, M.R.
dc.contributor.author Umar, M.
dc.contributor.author Salahshour, S.
dc.date.accessioned 2025-12-15T15:30:14Z
dc.date.available 2025-12-15T15:30:14Z
dc.date.issued 2026
dc.department Okan University en_US
dc.department-temp [sabir] Zulqurnain, Department of Mathematics and Computer Science, Lebanese American University, Beirut, Beirut Governorate, Lebanon; [Bano] Ambreen, Department of Mathematics and Statistics, Riphah International University, Islamabad, Pakistan; [Banaras] Muhammad Rehan, Department of Mathematics and Statistics, Riphah International University, Islamabad, Pakistan; [Umar] Muhammad Awais, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Tuzla, Istanbul, Turkey; [Salahshour] Soheil, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Tuzla, Istanbul, Turkey, Faculty of Engineering and Natural Sciences, Bahçeşehir Üniversitesi, Istanbul, Turkey en_US
dc.description.abstract This research’s goal is to demonstrate the numerical computing capabilities of the epidemic computer virus delay differential model (ECV-DDM) by relating the deep neural network along with a scale conjugate gradient scheme (DNNP-SCGS). The deep neural network process is implemented by taking 20 and 35 neurons and log-sigmoid transfer function in hidden layers. The mathematical form of the ECV-DDM is divided into uninfected S(u), latently infected L(u), breaking-out B(u), and the antivirus aptitude R(u). The framework based on stochastic computing is accessible for the ECV-DDM by using the data selection as 12%, 14%, and 74% for training, testing and authentication. The comparison of obtained and Runge-Kutta method is presented for the precision of the DNNP-SCGS. The approach’s reliability is authenticated by presenting the state transitions, regression values, correlation, and error histograms. © The Author(s) under exclusive licence to Korean Society for Informatics and Computational Applied Mathematics 2025. en_US
dc.identifier.doi 10.1007/s12190-025-02683-x
dc.identifier.issn 1598-5865
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-105021119265
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1007/s12190-025-02683-x
dc.identifier.uri https://hdl.handle.net/20.500.14517/8655
dc.identifier.volume 72 en_US
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Springer Nature en_US
dc.relation.ispartof Journal of Applied Mathematics and Computing en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Computer Virus Epidemic System en_US
dc.subject Deep Neural Networks en_US
dc.subject Delay en_US
dc.subject Hidden Layers en_US
dc.subject Scale Conjugate Gradient Scheme en_US
dc.title An Artificial Deep Neural Network Approach for the Computer Epidemic Virus Model en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article

Files