Load sharing strategy using intelligent controller of hybrid vehicle with fuel cell, battery and ultra-capacitor energy storage
No Thumbnail Available
Date
2022
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Bu çalışmada, yakıt hücresi, pil ve ultra kapasitör entegreli hidrojen yakıt hücreli hibrit elektrikli araçlar için yüksek dinamik yanıta ulaşmak ve enerji depolama kaynaklarının yüksek verimliliğini korumak için akıllı bir kontrolör önerilmiştir. Geliştirilen kontrolör, önerilen sistemin güç akışını, hidrojen yakıt hücreli hibrit elektrikli araçlar için optimal olacak şekilde akıllı bir izlemede yönetir. Bu çalışmanın başarısı bir Enerji yönetim sistemi (EMS) ile ilgilidir; bu sayede üç güç kaynağının mekanizma performansları ile yüksek verimde çalışmasını sağlamak için verimli yönetim geliştirilmiş ve kullanılmıştır. Bu çalışmada, her bir güç kaynağının hızlı dinamik tepkisini korurken, bu üç güç kaynağı arasındaki dağılımın kontrol edilmesi ve yüke verimli, güvenilirlik ve memnuniyet olarak beslenmesi sağlanmıştır. Bulanık Mantık Denetleyicisi (FLC) ve Yapay Sinir Ağları (YSA), EMS gereksinimlerini karşılamak ve yük güç taleplerini verimli bir şekilde karşılamak ve daha az hidrojen tüketimi kullanmak için kullanılır. Ayrıca, önerilen Dalgacık Sinir Ağı ve Tekrarlayan Dalgacık Sinir Ağı'nın kontrol stratejileri, sırasıyla WNN-PI ve RWNN-PI olarak adlandırılan PI denetleyicisi ile bağlantılıdır; bu sayede parametreleri Parçacık Sürü Optimizasyonu (PSO) algoritması kullanılarak ayarlanır. Kontrol stratejileri, yakıt hücresinin ve pilin çıkışını kontrol eden ve DC barasının istenen voltaj seviyesini sağlayan ve aynı zamanda enerjiyi muhafaza eden güç koşullandırma birimi dönüştürücüleri ile pil ve ultra kapasitör şarj durumunu (SOC) dikkate almak için kullanılır. 300 voltta kararlı voltaj. Önerilen sistemin ADVISOR Simülatörü kullanılarak test edilmesi için çeşitli araç sürüş çevrimleri uygulanırken, sistemin analiz ve değerlendirmeleri MATLAB/Simulink ortamında yapılmıştır.
An intelligent controller is proposed in this work for hydrogen fuel cell hybrid electric vehicles that integrated battery, fuel cell, and ultracapacitor to reach a high dynamic response and keep high efficiency of energy storage resources. The developed controller manages the power flow of the proposed system in an intelligent tracking to be optimal for hydrogen fuel cell hybrid electric vehicles. An effective management system has been developed and put into use to ensure that three power sources are functioning with high efficiency and optimum mechanism performance since the success of this project depends on an energy management system (EMS). In this work controlling the distribution between those three power sources and feeding into the load as efficiently, reliability and satisfaction, while, keeping fast dynamic response of each power source. The Fuzzy Logic Controller (FLC) and the Artificial Neural Networks (ANNs) are employed to meet the EMS requirements and efficiently meet the load power demands as well as use less hydrogen consumption. Moreover, the control strategies of the proposed Wavelet Neural Network and Recurrent Wavelet Neural Network are linked with the PI controller, where called as WNN-PI and RWNN-PI respectively; whereby their parameters are tuned by using the Particle Swarm Optimization (PSO) algorithm. The control strategies are employed for considering the battery and ultra-capacitor state-of-charge (SOC) with power conditioning unit converters that control the output of fuel cell and battery and provide the desired voltage level of the DC bus as well as keep the voltage stable at 300 volts. Analysis and evaluations of the system have been done by MATLAB/Simulink environment while various vehicle driving cycles have been applied to test the proposed system by using ADVISOR Simulator.)
An intelligent controller is proposed in this work for hydrogen fuel cell hybrid electric vehicles that integrated battery, fuel cell, and ultracapacitor to reach a high dynamic response and keep high efficiency of energy storage resources. The developed controller manages the power flow of the proposed system in an intelligent tracking to be optimal for hydrogen fuel cell hybrid electric vehicles. An effective management system has been developed and put into use to ensure that three power sources are functioning with high efficiency and optimum mechanism performance since the success of this project depends on an energy management system (EMS). In this work controlling the distribution between those three power sources and feeding into the load as efficiently, reliability and satisfaction, while, keeping fast dynamic response of each power source. The Fuzzy Logic Controller (FLC) and the Artificial Neural Networks (ANNs) are employed to meet the EMS requirements and efficiently meet the load power demands as well as use less hydrogen consumption. Moreover, the control strategies of the proposed Wavelet Neural Network and Recurrent Wavelet Neural Network are linked with the PI controller, where called as WNN-PI and RWNN-PI respectively; whereby their parameters are tuned by using the Particle Swarm Optimization (PSO) algorithm. The control strategies are employed for considering the battery and ultra-capacitor state-of-charge (SOC) with power conditioning unit converters that control the output of fuel cell and battery and provide the desired voltage level of the DC bus as well as keep the voltage stable at 300 volts. Analysis and evaluations of the system have been done by MATLAB/Simulink environment while various vehicle driving cycles have been applied to test the proposed system by using ADVISOR Simulator.)
Description
Keywords
Elektrik ve Elektronik Mühendisliği, Bulanık denetim, Electrical and Electronics Engineering, Elektrikli araçlar, Fuzzy control, Parçacık sürü optimizasyonu, Electric vehicles, Particle swarm optimization, Yapay sinir ağları, Artificial neural networks
Turkish CoHE Thesis Center URL
Fields of Science
Citation
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
191