A scoring approach for the assessment of study skills and learning styles
dc.authorscopusid | 55377757500 | |
dc.authorscopusid | 6508147381 | |
dc.contributor.author | Göğüş,A. | |
dc.contributor.author | Ertek,G. | |
dc.contributor.other | Eğitim Bilimleri / Educational Sciences | |
dc.date.accessioned | 2024-05-25T12:33:17Z | |
dc.date.available | 2024-05-25T12:33:17Z | |
dc.date.issued | 2020 | |
dc.department | Okan University | en_US |
dc.department-temp | Göğüş A., Faculty of Education, Istanbul Okan University, Istanbul, Turkey; Ertek G., Faculty of Business and Economics, United Arab Emirates University, Al Ain, United Arab Emirates | en_US |
dc.description.abstract | This paper presents the application of a scoring method and algorithm, adapted from the domain of financial risk management, for the computer-based assessment of study skills and learning styles of university students. The goal is to provide a single score that summarizes the overall intensity of a student’s study skills and, in effect, develop a deeper understanding of the relation between learning styles and study skills. The dimensionality reduction obtained through the scoring algorithm also enables comparing the single-dimensional study skill scores of students for various learning styles. The algorithm computes a weight for each study skill to measure its linear contribution to the overall study skill score, also providing a natural ranking of various study skills with respect to impact on total score. Statistical tests have been conducted to measure the differences in scores for various styles in Kolb’s four-region and nine-region models. The results suggest that students with different learning styles can have statistically significant differences in their overall study skill scores. The primary contribution of the study is illustrating how a scoring approach, based on unsupervised machine learning, can enable a deep understanding of learning styles and development of educational strategies. © 2020 by the authors. | en_US |
dc.identifier.citation | 2 | |
dc.identifier.doi | 10.18178/ijiet.2020.10.10.1448 | |
dc.identifier.endpage | 722 | en_US |
dc.identifier.issn | 2010-3689 | |
dc.identifier.issue | 10 | en_US |
dc.identifier.scopus | 2-s2.0-85090694652 | |
dc.identifier.scopusquality | Q3 | |
dc.identifier.startpage | 715 | en_US |
dc.identifier.uri | https://doi.org/10.18178/ijiet.2020.10.10.1448 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14517/2468 | |
dc.identifier.volume | 10 | en_US |
dc.institutionauthor | Göğüş A. | |
dc.institutionauthor | Göğüş, Aytaç | |
dc.institutionauthor | Göğüş, Aytaç | |
dc.language.iso | en | |
dc.publisher | International Journal of Information and Education Technology | en_US |
dc.relation.ispartof | International Journal of Information and Education Technology | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Data analytics | en_US |
dc.subject | Data mining | en_US |
dc.subject | Education | en_US |
dc.subject | Learning linear models | en_US |
dc.subject | Unsupervised learning | en_US |
dc.title | A scoring approach for the assessment of study skills and learning styles | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f779be3f-1e8a-4595-b9e6-633dbec3310c | |
relation.isAuthorOfPublication.latestForDiscovery | f779be3f-1e8a-4595-b9e6-633dbec3310c | |
relation.isOrgUnitOfPublication | c81b0aed-503b-4e45-9d67-2d450334c7fa | |
relation.isOrgUnitOfPublication.latestForDiscovery | c81b0aed-503b-4e45-9d67-2d450334c7fa |