Kronik hastalıklar ve kansere bağlı ölüm oranlarının ülkelerin gelir düzeyi farklılıkları ve demografik değişimleriyle olan ilişkisi

No Thumbnail Available

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Abstract

Bu araştırmada, kronik hastalıklar ve kansere bağlı ölüm oranlarının ülkelerin gelir düzeyi farklılıkları ve demografik değişimleriyle olan ilişkisinin incelenmesi amaçlanmıştır. Araştırmada gelişmiş, gelişmekte olan ve az gelişmiş olmak üzere, her bir kategoriden 5'er ülke seçilmek üzere toplamda 15 ülkeye ilişkin kronik hastalık ve kanser nedenli ölümler, kentleşme, GSMH, okullaşma kız, okullaşma erkek, GINI, erkek nüfus yüzdesi ve yaş bağlılık yüzdesi parametrelerinin 2000-2019 yılları arsasındaki değerleri alınmıştır. Araştırma sonuçlarına göre az gelişmiş ülkelerdeki kanser ve kronik hastalık nedenli ölüm oranları gelişmekte olan ülkelerden; gelişmekte olan ülkelerin kanser ve kronik hastalık nedenli ölüm oranları ise gelişmiş ülkelerin ölüm oranlarından daha yüksektir (p<0.05). Aynı gelir grubundaki ülkelerde de, kronik hastalık ve kanser sebepli ölümlerin istatistiksel olarak anlamlı farklılık göstermektedir (p<0.05). Logit model sonuçları, gelir grupları ve GSMH değerlerinin kronik hastalık ve kanser nedenli ölümler üzerindeki etkisinin istatistiksel olarak anlamlı olduğunu göstermiştir (p<0.05). GLM analizi sonuçlarına göre kentleşme, erkek okullaşma oranı, erkek nüfus yüzdesi ve yaş bağlılık oranlarının kronik hastalık ve kanser nedenli ölümler üzerindeki etkisi istatistiksel olarak anlamlı olup, modelin açıklama gücü %78.9 düzeyindedir (p<0.05). Aynı gelir gruplarında, GLM analizi sonuçlarına göre kentleşme, GSMH, erkek okullaşma oranı, erkek nüfus yüzdesi ve yaş bağlılık oranlarının kronik hastalık ve kanser nedenli ölümler üzerindeki etkisi istatistiksel olarak anlamlı olup, modelin açıklama gücü %74.4 düzeyindedir (p<0.05). Tüm gelir grupları için yapılan GLM analizinde, modelin açıklama gücü çok daha yüksek olup, %94.8 olarak bulunmuştur. Gelir grubu ile bütün demografik ikili gruplarının etkileşiminin kronik hastalık ve kanser nedenli ölümler üzerindeki etkisi istatistiksel olarak anlamlıdır (p<0.05).Korelasyon analizi sonuçlarına göre kronik hastalık ve kanser nedenli ölümler ile kentleşme (r=0.491; p<0.01), GINI (r=0.560; p<0.01), erkek nüfus yüzdesi (r=0.134; p<0.05) ve yaş bağlılık oranı (r=0.562; p<0.01) arasında istatistiksel olarak anlamlı ve pozitif yönde ilişki vardır. Öte yandan kronik hastalık ve kanser nedenli ölümler ile GSMH (r=-0.931; p<0.01), kız okullaşma oranı (r=-0.747; p<0.01), erkek okullaşma oranı (r=-0.766; p<0.01) arasında istatistiksel olarak anlamlı ve negatif yönde ilişki vardır. SEM panel veri analizi sonuçlarına göre kentleşme, cinsiyet ve yaş değişkenlerinin kronik hastalık ve kanser nedenli mortalite üzerindeki etkisi istatistiksel olarak anlamlı ve negatif yönde; GINI katsayısının etkisi ise anlamlı ve pozitif yöndedir (p<0.001). Modelin açıklama gücü oldukça yüksek düzeydedir ve tüm varyansın %86.9'unu açıklamaktadır. Sonuç olarak kronik hastalık ve kanser nedenli ölümlerde ekonomik sebepler, tıbbi sebeplerin çok üzerindedir.
In this study, it was aimed to examine the relationship between chronic diseases and cancer-related mortality rates and the differences in income levels and demographic changes of countries. Mortality, urbanization, GDP, schooling female, schooling male, GINI, male population percentage and age dependency percentage for a total of 15 countries, 5 countries from each category, including developed, developing and underdeveloped countries were subjected. The values of the parameters for the years 2000-2019 were used in the analysis. According to the results of the research, death rates due to cancer and chronic diseases in underdeveloped countries are higher than those in developing countries; the death rates of developing countries due to cancer and chronic diseases are higher than the death rates of developed countries (p<0.05). In countries in the same income group, there is a statistically significant difference in deaths due to chronic diseases and cancer (p<0.05). Logit model results showed that the effects of income groups and GDP values on deaths from chronic diseases and cancer were statistically significant (p<0.05). According to the results of the GLM analysis, the effects of urbanization, male schooling rate, male population percentage and age commitment rates on deaths due to chronic diseases and cancer were statistically significant, and the explanatory power of the model was 78.9% (p<0.05). In the same income groups, according to the results of the GLM analysis, the effects of urbanization, GDP, male enrollment rate, male population percentage and age commitment rates on deaths due to chronic diseases and cancer were statistically significant, and the explanatory power of the model was 74.4% (p<0.05). In the GLM analysis for all income groups, the explanatory power of the model was much higher and was found to be 94.8%. The effect of the interaction of income group and all demographic binary groups on deaths due to chronic diseases and cancer was statistically significant (p<0.05). According to the results of the correlation analysis, deaths due to chronic diseases and cancer and urbanization (r=0.491; p<0.01), GINI (r=0.560; p<0.01), percentage of male population (r=0.134; p<0.05) and age dependency ratio ( There is a statistically significant and positive correlation between r=0.562; p<0.01). On the other hand, there was no statistical difference between deaths due to chronic diseases and cancer and GNP (r=-0.931; p<0.01), female enrollment rate (r=-0.747; p<0.01), male enrollment rate (r=-0.766; p<0.01). There is a significant and negative relationship. According to the results of SEM panel data analysis, the effects of urbanization, gender and age variables on mortality due to chronic diseases and cancer are statistically significant and negative; The effect of the GINI coefficient is significant and positive (p<0.001). The explanatory power of the model is quite high and explains 86.9% of all variance. As a result, economic reasons for deaths due to chronic diseases and cancer far exceed medical reasons.

Description

Keywords

Sağlık Yönetimi, Healthcare Management

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

End Page

130