Applying different machine learning algorithms to predict the viscosity behavior of MWCNT–alumina/water–ethylene glycol (80:20) hybrid antifreeze

dc.authorscopusid57694671000
dc.authorscopusid57219798002
dc.authorscopusid59418662600
dc.authorscopusid57338920800
dc.authorscopusid23028598900
dc.authorscopusid56388625300
dc.contributor.authorSalahshour, Soheıl
dc.contributor.authorOmar, I.
dc.contributor.authorSaddam, A.B.
dc.contributor.authorBaghoolizadeh, M.
dc.contributor.authorSalahshour, S.
dc.contributor.authorPirmoradian, M.
dc.date.accessioned2024-12-15T15:41:25Z
dc.date.available2024-12-15T15:41:25Z
dc.date.issued2024
dc.departmentOkan Universityen_US
dc.department-tempHussein S.A., Department of pathological analyzes, Al Manara College for Medical Sciences, Maysan, Iraq; Omar I., Air Conditioning Engineering Department, Faculty of Engineering, Warith Al-Anbiyaa University, Karbala, 56001, Iraq; Saddam A.B., Department of Electrical Engineering Techniques, Al-Amarah University College, Maysan, Iraq; Baghoolizadeh M., Department of Mechanical Engineering, Shahrekord University, Shahrekord, 88186-34141, Iran; Salahshour S., Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, Turkey, Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey, Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon; Pirmoradian M., Department of Mechanical Engineering, Khomeinishahr branch, Islamic Azad University, Khomeinishahr, Iranen_US
dc.description.abstractWhile machine learning has become the new way of analyzing data, neutral networks form the basis of this revolutionary technology. In this work, we shall employ the power of neural networks to analyze and demystify the processes in nanofluids. By combining the precision of neural networks with the optimization capabilities of genetic algorithms, we aim to create a more accurate and efficient prediction model for MWCNT-alumina/water-ethylene glycol (80:20) hybrid antifreeze. Our approach entails using an MLP neural network and several training functions (LM, GD, BFGS, BN) with an adjustable number of neurons. The inputs of the network are φ (solid volume fraction or ϕ), temperature (T), and shear rate (γ), and the output is μnf of MWCNT-alumina/water-ethylene glycol (80:20) hybrid anti-freeze. To improve the accuracy of the final model, we use genetic optimization to make final adjustments to the parameters of the neural network. Utilizing the detailed analysis of the primary characteristics of these algorithms, we conclude that the BFGS function is the best to obtain neural network training. Steady performance achieved by this function—0.99828 of the R-value and RMSE value significantly equal to 0.213—illustrates good stability and accuracy of the suggested model. This work contributes to progressing the existing knowledge about the behavior of nanofluids and can stimulate further improvement in heat transfer and energy utilization. © 2024 The Author(s)en_US
dc.identifier.citation0
dc.identifier.doi10.1016/j.ijft.2024.100966
dc.identifier.issn2666-2027
dc.identifier.scopus2-s2.0-85209739016
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.ijft.2024.100966
dc.identifier.urihttps://hdl.handle.net/20.500.14517/7547
dc.identifier.volume24en_US
dc.identifier.wosqualityN/A
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.relation.ispartofInternational Journal of Thermofluidsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHybrid antifreezeen_US
dc.subjectMachine learning algorithmen_US
dc.subjectMLP neural networken_US
dc.subjectViscosity behavioren_US
dc.titleApplying different machine learning algorithms to predict the viscosity behavior of MWCNT–alumina/water–ethylene glycol (80:20) hybrid antifreezeen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf5ba517c-75fb-4260-af62-01c5f5912f3d
relation.isAuthorOfPublication.latestForDiscoveryf5ba517c-75fb-4260-af62-01c5f5912f3d

Files