Enhancing Solar Greenhouse Efficiency Through the Integration of Phase Change Materials: Thermal Regulation and Sustainable Crop Growth

No Thumbnail Available

Date

2025

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Events

Abstract

The increased request for sustainable agricultural practices in response to climate change requires inventions in greenhouse design and operation. This review inspects scientific investigations that explore how solar greenhouses utilise phase change materials (PCMs) to improve thermal regulation, decrease expenses, and support crop growth. Also, it examines the matter of temperature instability in traditional greenhouses, as fluctuated temperatures would negatively impact plant health and crop production. Experimental research on PCMs has led to the development of a new thermal energy storage system, which has been analysed for its competence. The outcomes of this review specify that greenhouse temperatures can increase meaningfully during crucial nighttime hours when PCMs are utilised, with a temperature difference ranges between 1 °C to 2 °C greater than those in standard greenhouses. Also, the integration of PCMs can reduce the daily temperature fluctuation by 3 °C to 5 °C, enhancing temperature control. Accordingly, it can be said that the incorporation of PCMs within solar greenhouses can enhance the environmental conditions of crops besides boosting the thermal efficacy, contributing to agricultural sustainability. Finally, this review presents an operational strategy to transform greenhouse functionality by enhancing the energy competence and climate resilience. In turn, these systems could revolutionize greenhouse operations and address global food security challenges. © 2025 The Author(s)

Description

Keywords

Agricultural Sustainability, Phase Change Materials (Pcms), Solar Greenhouses, Temperature Stability, Thermal Regulation

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q1

Scopus Q

Q1

Source

Energy and Buildings

Volume

337

Issue

Start Page

End Page