Modeling the Thermal Performance of Hybrid Paraffin-Air Nanostructure in a Heat Sink: Effect of Atomic Ratio of Al2o3 Nanoparticles

dc.authorscopusid59500256600
dc.authorscopusid58902695600
dc.authorscopusid59521702600
dc.authorscopusid57201344229
dc.authorscopusid23028598900
dc.authorscopusid59471907100
dc.contributor.authorGhanim, W.K.
dc.contributor.authorRasheed, R.H.
dc.contributor.authorSadeq, A.S.
dc.contributor.authorFares, M.N.
dc.contributor.authorSalahshour, S.
dc.contributor.authorSabetvand, R.
dc.date.accessioned2025-02-17T18:50:00Z
dc.date.available2025-02-17T18:50:00Z
dc.date.issued2025
dc.departmentOkan Universityen_US
dc.department-tempGhanim W.K., Chemical Engineering Department, University of Basrah, Basrah, Iraq; Rasheed R.H., Air Conditioning Engineering Department, Faculty of Engineering, Warith Al-Anbiyaa University, Iraq; Sadeq A.S., Chemical Engineering Department, University of Basrah, Basrah, Iraq; Fares M.N., Chemical Engineering Department, University of Basrah, Basrah, Iraq; Salahshour S., Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, Turkey, Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey, Faculty of Science and Letters, Piri Reis University, Tuzla, Istanbul, Turkey; Sabetvand R., Department of Energy Engineering and Physics, Faculty of Condensed Matter Physics, Amirkabir University of Technology, Tehran, Iranen_US
dc.description.abstractThis study investigates the effect of varying atomic ratios (1 %, 3 %, 6 %, and 10 %) of Al₂O₃ nanoparticles on the thermal performance of a hybrid paraffin-air nanostructure in a heat sink, using molecular dynamics simulations. The primary objective is to enhance the thermal properties of phase change materials for efficient energy storage, which is crucial for advancing thermal management systems. The purpose is to optimize nanoparticle concentration and assess how altering the atomic ratio of Al₂O₃ nanoparticles can improve thermal conductivity and heat flux within the phase change material matrix. The results demonstrate that after reaching equilibrium within 20 ns, the total energy of the atomic sample converges to −5990.70 eV, indicating stable atomic oscillations. Notably, increasing Al₂O₃ nanoparticle concentration to 3 % significantly improves the heat flux and thermal conductivity, reaching values of 354.11 W/m2 and 405.42 W/m·K, respectively. The radial distribution function analysis shows a decrease in the maximum peak to 3.49 at the 3 % concentration, suggesting that a higher concentration of oxygen atoms in the material could enhance thermal performance. Furthermore, the maximum temperature within the system increases to 934.17 K at the 3 % atomic ratio. The aggregation time at this concentration is 8.11 ns, which decreases to 6.83 ns at a 10 % atomic ratio, further supporting the detrimental impact of nanoparticle aggregation. Notably, a 3 % concentration is found to be optimal for improving performance. These findings show the critical role of Al₂O₃ nanoparticles in enhancing the thermal performance of phase change material-based systems, offering valuable insights into optimal nanoparticle concentration and aggregation for effective thermal management in energy storage applications. © 2025 The Authorsen_US
dc.identifier.citation0
dc.identifier.doi10.1016/j.cscee.2025.101109
dc.identifier.issn2666-0164
dc.identifier.scopus2-s2.0-85215578370
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.cscee.2025.101109
dc.identifier.urihttps://hdl.handle.net/20.500.14517/7701
dc.identifier.volume11en_US
dc.identifier.wosqualityN/A
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofCase Studies in Chemical and Environmental Engineeringen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAl<Sub>2</Sub>O<Sub>3</Sub> Nanoparticlesen_US
dc.subjectMolecular Dynamics Simulationen_US
dc.subjectPhase Change Materialsen_US
dc.subjectThermal Performanceen_US
dc.titleModeling the Thermal Performance of Hybrid Paraffin-Air Nanostructure in a Heat Sink: Effect of Atomic Ratio of Al2o3 Nanoparticlesen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files