Innovative approache for the nonlinear atangana conformable Klein-Gordon equation unveiling traveling wave patterns

dc.authorscopusid56913185600
dc.authorscopusid35368497200
dc.authorscopusid57193410991
dc.authorscopusid59371285600
dc.authorscopusid57192604751
dc.authorscopusid23028598900
dc.contributor.authorRezazadeh, H.
dc.contributor.authorHosseinzadeh, M.A.
dc.contributor.authorZaidan, L.I.
dc.contributor.authorAwad, F.S.
dc.contributor.authorBatool, F.
dc.contributor.authorSalahshour, S.
dc.date.accessioned2024-11-15T19:39:44Z
dc.date.available2024-11-15T19:39:44Z
dc.date.issued2024
dc.departmentOkan Universityen_US
dc.department-tempRezazadeh H., Faculty of Engineering Modern Technologies, Amol University of Special Modern Technologies, Amol, Iran; Hosseinzadeh M.A., Faculty of Engineering Modern Technologies, Amol University of Special Modern Technologies, Amol, Iran; Zaidan L.I., Education College, University of Babylon, Babil, Iraq; Awad F.S., Department of Mathematics, College of Education for Pure Sciences, University of Kerbela, Iraq; Batool F., School of Mathematics, Minhaj University Lahore, 54590, Pakistan; Salahshour S., Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, Turkey, Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey, Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanonen_US
dc.description.abstractThe aim of current work is to establish novel traveling wave solutions of the nonlinear Atangana conformable Klein - Gordon equation using a new extended direct algebraic technique. The Klein - Gordon equation is the relativistic state of the Schrödinger equation with a second - order time derivative and zero spin. Complex wave variable transformation is used to convert Atangana conformable nonlinear differential equation into an ordinary differential equation. Using the proposed technique based on Maple software structure, various types of solutions, such as, generalized trigonometric, generalized hyperbolic, and exponential functions, are established. When special parameteric values are considered for this method, solitary wave solutions can be obtained through other methods, such as the ([Formula presented])-expansion method, the modified Kudryashov method, the sub-equation method, and so forth. A physical explanation is provided for the solutions under consideration to enhance comprehension of the physical phenomena resulting from the obtained solutions, provided that the physical parameters are set appropriately using 3D, 2D, and contour simulations. The results demonstrated that the new extended direct algebraic method provides a more potent mathematical tool for solving numerous more nonlinear partial differential equations with the aid of symbolic computation. © 2024en_US
dc.identifier.citation0
dc.identifier.doi10.1016/j.padiff.2024.100935
dc.identifier.issn2666-8181
dc.identifier.scopus2-s2.0-85206601041
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.padiff.2024.100935
dc.identifier.urihttps://hdl.handle.net/20.500.14517/7018
dc.identifier.volume12en_US
dc.institutionauthorSalahshour, Soheıl
dc.institutionauthorSalahshour, Soheıl
dc.language.isoen
dc.publisherElsevier B.V.en_US
dc.relation.ispartofPartial Differential Equations in Applied Mathematicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAtangana conformable derivativeen_US
dc.subjectNew extended direct algebraic techniqueen_US
dc.subjectNonlinear Klein-Gordon equationen_US
dc.subjectTraveling wave solutionen_US
dc.titleInnovative approache for the nonlinear atangana conformable Klein-Gordon equation unveiling traveling wave patternsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf5ba517c-75fb-4260-af62-01c5f5912f3d
relation.isAuthorOfPublication.latestForDiscoveryf5ba517c-75fb-4260-af62-01c5f5912f3d

Files