Latent fingerprint enhancement based on EDTV model

dc.authorscopusid56366094100
dc.authorscopusid56405641800
dc.authorscopusid56347828000
dc.authorscopusid57195625873
dc.authorscopusid57258623000
dc.contributor.authorHilles,S.M.S.
dc.contributor.authorLiban,A.D.
dc.contributor.authorAltrad,A.M.M.
dc.contributor.authorEl-Ebiary,Y.A.B.
dc.contributor.authorHilles,M.M.
dc.date.accessioned2024-05-25T12:34:24Z
dc.date.available2024-05-25T12:34:24Z
dc.date.issued2021
dc.departmentOkan Universityen_US
dc.department-tempHilles S.M.S., Istanbul Okan University, Turkey; Liban A.D., Hargeisa University, Somalia; Altrad A.M.M., American University of Phnom Penh (AUPP), Cambodia; El-Ebiary Y.A.B., Universiti Sultan Zainal Abidin, Malaysia; Hilles M.M., University College of Applied Science, Palestineen_US
dc.description.abstractThe chapter presents latent fingerprint enhancement technique for enforcement agencies to identify criminals. There are many challenges in the area of latent fingerprinting due to poor-quality images, which consist of unclear ridge structure and overlapping patterns with structure noise. Image enhancement is important to suppress several different noises for improving accuracy of ridge structure. The chapter presents a combination of edge directional total variation model, EDTV, and quality image enhancement with lost minutia re-construction, RMSE, for evaluation and performance in the proposed algorithm. The result shows the average of three different image categories which are extracted from the SD7 dataset, and the assessments are good, bad, and ugly, respectively. The result of RMSE before and after enhancement shows the performance ratio of the proposed method is better for latent fingerprint images compared to bad and ugly images while there is not much difference with performance of bad and ugly. © 2021, IGI Global.en_US
dc.identifier.citation0
dc.identifier.doi10.4018/978-1-7998-6985-6.ch021
dc.identifier.endpage446en_US
dc.identifier.isbn978-179986986-3
dc.identifier.isbn978-179986985-6
dc.identifier.scopus2-s2.0-85128121496
dc.identifier.startpage431en_US
dc.identifier.urihttps://doi.org/10.4018/978-1-7998-6985-6.ch021
dc.identifier.urihttps://hdl.handle.net/20.500.14517/2580
dc.language.isoen
dc.publisherIGI Globalen_US
dc.relation.ispartofHandbook of Research on Applied Data Science and Artificial Intelligence in Business and Industryen_US
dc.relation.publicationcategoryKitap Bölümü - Uluslararasıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subject[No Keyword Available]en_US
dc.titleLatent fingerprint enhancement based on EDTV modelen_US
dc.typeBook Parten_US
dspace.entity.typePublication

Files