Discovery of the Similarities for Parasites

dc.contributor.authorYildirim, Pinar
dc.contributor.authorCeken, Kagan
dc.contributor.otherBilgisayar Mühendisliği / Computer Engineering
dc.date.accessioned2024-05-25T11:40:29Z
dc.date.available2024-05-25T11:40:29Z
dc.date.issued2020
dc.departmentOkan Universityen_US
dc.department-temp[Yildirim, Pinar] Istanbul Okan Univ, Fac Engn, Dept Comp Engn, Istanbul, Turkey; [Ceken, Kagan] Akdeniz Univ, Fac Med, Dept Radiol, Antalya, Turkeyen_US
dc.description.abstractIn this paper we report on a study for discovering hidden patterns in commonly seen parasites by using abstracts from MEDLINE database. Parasites affect millions of people in the world and cause tremendous morbidity and mortality. Diagnosing parasites can be difficult because some symptoms and related to gene-proteins can be common to some of them. We utilize a web based biomedical text mining tool to find symptoms and gene-proteins. After selecting the most common symptoms and gene-proteins, we create two datasets with the frequencies of symptoms and gene-proteins for each parasite. For this work we selected the k-means algorithm for clustering analysis and apply it on the datasets. In addition, we compared different algorithms to observe the performance of k-means. Clustering analysis generated different types of groups of parasites. Although the results are not 100% certain, they can make positive contributions to medical researchers and experts for the diagnosis of parasites.en_US
dc.identifier.citation0
dc.identifier.doi10.1109/uyms50627.2020.9247052
dc.identifier.endpage62en_US
dc.identifier.isbn9781728185415
dc.identifier.startpage59en_US
dc.identifier.urihttps://doi.org/10.1109/uyms50627.2020.9247052
dc.identifier.urihttps://hdl.handle.net/20.500.14517/1442
dc.identifier.wosWOS:000680657300012
dc.institutionauthorYıldırım, Pınar
dc.institutionauthorYıldırım, Pınar
dc.language.isoen
dc.publisherIeeeen_US
dc.relation.ispartof14th Turkish National Software Engineering Symposium (UYMS) -- OCT 07-09, 2020 -- ELECTR NETWORKen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectbiomedical text miningen_US
dc.subjectclustering analysisen_US
dc.subjectk-means algorithmen_US
dc.subjectparasitesen_US
dc.titleDiscovery of the Similarities for Parasitesen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublicationd1a41069-c8b7-49f8-9d07-2597e46bab8c
relation.isAuthorOfPublication.latestForDiscoveryd1a41069-c8b7-49f8-9d07-2597e46bab8c
relation.isOrgUnitOfPublicationc8741b9b-4455-4984-a245-360ece4aa1d9
relation.isOrgUnitOfPublication.latestForDiscoveryc8741b9b-4455-4984-a245-360ece4aa1d9

Files