THE CLASSICAL <i>ADIABATIC CONSTANCY</i> OF <i>PV</i><SUP>γ</SUP> FOR AN IDEAL GAS, CAN BE SHOWN TO BE A QUANTUM MECHANICAL OCCURRENCE, WHICH YIELDS THE PARTICULAR VALUE OF THE <i>CONSTANT</i>, IN QUESTION

dc.authoridYarman, Tolga/0000-0003-3209-2264
dc.authorwosidYarman, Tolga/Q-9753-2019
dc.contributor.authorYarman, Tolga
dc.contributor.authorKholmetskii, Alexander L.
dc.contributor.authorKorfali, Onder
dc.contributor.otherEnerji Sistemleri Mühendisliği / Energy Systems Engineering
dc.date.accessioned2024-10-15T20:19:39Z
dc.date.available2024-10-15T20:19:39Z
dc.date.issued2012
dc.departmentOkan Universityen_US
dc.department-temp[Yarman, Tolga; Kholmetskii, Alexander L.] Okan Univ, Dept Engn, Istanbul, Turkey; [Yarman, Tolga] Savronik, Eskisehir, Turkey; [Kholmetskii, Alexander L.] Belarusian State Univ, Dept Phys, Minsk 220030, BELARUS; [Korfali, Onder] Galatasaray Univ, Fac Engn & Technol, Istanbul, Turkeyen_US
dc.descriptionYarman, Tolga/0000-0003-3209-2264en_US
dc.description.abstractIn this paper we find a full connection between the long lasting macroscopic classical laws of gases and the quantum mechanical description of non-interacting particles confined in a box, thus constituting an ideal gas. In such a gas, the motion of each individual molecule can be considered to be independent of all other molecules, and the macroscopic parameters of an ideal gas, mainly, pressure P and temperature T, can be defined as simple average quantities based on individual motions of all molecules in consideration. It is shown that for an ideal gas enclosed in a macroscopic cubic box of volume V, an alphanumeric expression for the Constant appearing in the classical law of adiabatic expansion law, i.e. PV5/3 = Constant, can be derived based on quantum mechanics. Note that this constant has otherwise remained for centuries, as just an abstract quantity in the form of P1V15/3=P2V25/3 = P3V35/3 written for different thermodynamic states, delineated through an adiabatic transformation. No one even seems to have thought that it may eventually have a particular expression. Physical implications of the result we disclose are discussed.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citation1
dc.identifier.doi[WOS-DOI-BELIRLENECEK-236]
dc.identifier.endpage65en_US
dc.identifier.issn1300-3615
dc.identifier.issue1en_US
dc.identifier.scopusqualityQ4
dc.identifier.startpage59en_US
dc.identifier.urihttps://hdl.handle.net/20.500.14517/6484
dc.identifier.volume32en_US
dc.identifier.wosWOS:000303629600007
dc.identifier.wosqualityQ4
dc.institutionauthorYarman, Nuh Tolga
dc.language.isoen
dc.publisherTurkish Soc thermal Sciences Technologyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAdiabatic transformationen_US
dc.subjectQuatnum Mechanicsen_US
dc.subjectSpecial Theory of Relativityen_US
dc.subjectUniversal Matter Architectureen_US
dc.titleTHE CLASSICAL <i>ADIABATIC CONSTANCY</i> OF <i>PV</i><SUP>γ</SUP> FOR AN IDEAL GAS, CAN BE SHOWN TO BE A QUANTUM MECHANICAL OCCURRENCE, WHICH YIELDS THE PARTICULAR VALUE OF THE <i>CONSTANT</i>, IN QUESTIONen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicatione8750528-f58f-486e-9a0a-eb4ab45fb468
relation.isAuthorOfPublication.latestForDiscoverye8750528-f58f-486e-9a0a-eb4ab45fb468
relation.isOrgUnitOfPublicatione2c8b290-2656-4ea1-8e8f-954383d6b397
relation.isOrgUnitOfPublication.latestForDiscoverye2c8b290-2656-4ea1-8e8f-954383d6b397

Files