Diagnostic value of shear wave velocity in polycystic ovarian syndrome

dc.authorscopusid55751531600
dc.authorscopusid36196212400
dc.authorscopusid36717335300
dc.authorscopusid57197837022
dc.authorscopusid53866166800
dc.authorscopusid57211085909
dc.contributor.authorGursu,T.
dc.contributor.authorCevik,H.
dc.contributor.authorDesteli,G.A.
dc.contributor.authorYilmaz,B.
dc.contributor.authorBildaci,T.B.
dc.contributor.authorEraslan,A.
dc.date.accessioned2024-05-25T12:34:20Z
dc.date.available2024-05-25T12:34:20Z
dc.date.issued2021
dc.departmentOkan Universityen_US
dc.department-tempGursu T., Department of Obstetrics and Gynecology, University of Health Sciences Turkey, Zeynep Kamil Maternity and Children’s Training And Research Hospital, Istanbul, Turkey; Cevik H., Department of Radiology, Okan University Hospital, Istanbul, Turkey; Desteli G.A., Department of Obstetrics and Gynecology, Baskent University Istanbul Hospital, Istanbul, Turkey; Yilmaz B., Department of Radiology, Okan University Hospital, Istanbul, Turkey; Bildaci T.B., Department of Obstetrics and Gynecology, Baskent University Istanbul Hospital, Istanbul, Turkey; Eraslan A., Department of Obstetrics and Gynecology, Reproductive Endocrinology Division, Dünya IVF Center, Kyrenia, Cyprusen_US
dc.description.abstractAim: In polycystic ovarian syndrome, the ovaries become stiffer due to chronic anovulation. We aimed to compare tissue elasticity in terms of shear wave velocities measured using acoustic radiation force impulse imaging technique between the ovaries of polycystic ovarian syndrome women and non-polycystic ovarian syndrome women. Material and methods: The study was designed as a retrospective data analysis of women who underwent transvaginal ultrasound and acoustic radiation force impulse imaging in a university hospital between July 2014 and March 2015, for various reasons. There were 32 polycystic ovarian syndrome patients and 32 patients without a diagnosis of polycystic ovarian syndrome. Age, body mass index, fasting glucose levels, cycle day 3 follicle stimulating hormone, luteinizing hormone, thyroid stimulating hormone, prolactin, antimullerian hormone levels, and menstrual patterns with clinical hyperandrogenism were evalu-ated. On the menstrual cycle days 2–4, by performing a transvaginal ultrasound scan, the ovarian volumes and antral follicle counts in both ovaries were recorded for each woman. The ultrasound system was converted into the elastography mode, and acoustic radiation force impulse imaging was performed. Shear wave velocity (m/sec) was measured at least 5 times for each ovary, and the mean value was calculated for each polycystic ovarian syndrome and non-polycystic ovarian syndrome woman. Results: Age, body mass index, fasting glucose levels, cycle day 3 follicle stimulating hormone, luteinizing hormone, thyroid stimulating hormone, and prolactin levels were similar between the groups (p >0,05). Antimullerian hormone levels, antral follicle counts, and mean ovarian volumes were statistically different between the groups (p <0,05). Mean shear wave velocity values for both ovaries were 2.12 ± 0.82 (0.78–4.9) m/sec in the polycystic ovarian syndrome group, and 1.18 ± 0.41 (0.77–2.0) m/sec in the non-polycystic ovarian syndrome group, which was statistically significantly different (p = 0.016). Conclusion: In our study, we found significantly higher shear wave velocity levels in polycystic ovarian syndrome women than non-polycystic ovarian syndrome women, which indicates an impact of the condition on shear wave velocity. The increased acoustic frequencies cause a decreased response in time to transition, and motion becomes out of phase; in other words, scattered waves are faster in stiffer ovaries. Our results are thus compat-ible with the pathophysiology of the disease. Shear wave velocity is a beneficial tool for evaluat-ing ovarian elasticity in polycystic ovarian syndrome patients in whom the levels are found to be significantly higher than non-polycystic ovarian syndrome women. In light of these findings, shear wave velocity is expected to be slower than polycystic ovarian syndrome levels in ovulatory women. © 2021, Polish Ultrasound Society. All rights reserved.en_US
dc.identifier.citation2
dc.identifier.doi10.15557/JoU.2021.0047
dc.identifier.endpagee281en_US
dc.identifier.issn2084-8404
dc.identifier.issue87en_US
dc.identifier.scopus2-s2.0-85125668986
dc.identifier.scopusqualityQ3
dc.identifier.startpagee277en_US
dc.identifier.urihttps://doi.org/10.15557/JoU.2021.0047
dc.identifier.urihttps://hdl.handle.net/20.500.14517/2572
dc.identifier.volume21en_US
dc.language.isoen
dc.publisherPolish Ultrasound Societyen_US
dc.relation.ispartofJournal of Ultrasonographyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAcoustic radiation force impulse imagingen_US
dc.subjectElastographyen_US
dc.subjectPolycystic ovarian syndromeen_US
dc.subjectShear wave velocityen_US
dc.subjectUltrasonographyen_US
dc.titleDiagnostic value of shear wave velocity in polycystic ovarian syndromeen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files