A classwise supervised ordering approach for morphology based hyperspectral image classification
dc.authorscopusid | 23088029900 | |
dc.authorscopusid | 23396161700 | |
dc.authorscopusid | 57203070803 | |
dc.contributor.author | Courty,N. | |
dc.contributor.author | Aptoula,E. | |
dc.contributor.author | Lefevre,S. | |
dc.date.accessioned | 2024-10-15T20:22:24Z | |
dc.date.available | 2024-10-15T20:22:24Z | |
dc.date.issued | 2012 | |
dc.department | Okan University | en_US |
dc.department-temp | Courty N., IRISA/Université de Bretagne Sud, Vannes, France, Institute of Automation, Beijing, China; Aptoula E., Okan University, Istanbul, Turkey; Lefevre S., IRISA/Université de Bretagne Sud, Vannes, France | en_US |
dc.description | Science Council of Japan; Information Processing Society of Japan (IPSJ); Inst. Electron., Inf. Commun. Eng. (IEICE) Inf. Syst. Soc. (ISS); Japan Society for the Promotion of Science (JSPS); The Telecommunications Advancement Foundation | en_US |
dc.description.abstract | We present a new method for the spectral-spatial classification of hyperspectral images, by means of morphological features and manifold learning. In particular, mathematical morphology has proved to be an invaluable tool for the description of remote sensing images. However, its application to hyperspectral data is problematic, due to the absence of a complete lattice structure at higher dimensions. We address this issue by following up previous experimental indications on the interest of classwise orderings. The practical interest of the proposed approach is shown through comparison on the Pavia dataset with Extended Morphological Profiles, against which it achieves superior results. © 2012 ICPR Org Committee. | en_US |
dc.identifier.citation | 7 | |
dc.identifier.doi | [SCOPUS-DOI-BELIRLENECEK-128] | |
dc.identifier.endpage | 2000 | en_US |
dc.identifier.isbn | 978-499064410-9 | |
dc.identifier.issn | 1051-4651 | |
dc.identifier.scopus | 2-s2.0-84874566044 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.startpage | 1997 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.14517/6743 | |
dc.language.iso | en | |
dc.relation.ispartof | Proceedings - International Conference on Pattern Recognition -- 21st International Conference on Pattern Recognition, ICPR 2012 -- 11 November 2012 through 15 November 2012 -- Tsukuba -- 95857 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | [No Keyword Available] | en_US |
dc.title | A classwise supervised ordering approach for morphology based hyperspectral image classification | en_US |
dc.type | Conference Object | en_US |
dspace.entity.type | Publication |