A classwise supervised ordering approach for morphology based hyperspectral image classification

dc.authorscopusid23088029900
dc.authorscopusid23396161700
dc.authorscopusid57203070803
dc.contributor.authorCourty,N.
dc.contributor.authorAptoula,E.
dc.contributor.authorLefevre,S.
dc.date.accessioned2024-10-15T20:22:24Z
dc.date.available2024-10-15T20:22:24Z
dc.date.issued2012
dc.departmentOkan Universityen_US
dc.department-tempCourty N., IRISA/Université de Bretagne Sud, Vannes, France, Institute of Automation, Beijing, China; Aptoula E., Okan University, Istanbul, Turkey; Lefevre S., IRISA/Université de Bretagne Sud, Vannes, Franceen_US
dc.descriptionScience Council of Japan; Information Processing Society of Japan (IPSJ); Inst. Electron., Inf. Commun. Eng. (IEICE) Inf. Syst. Soc. (ISS); Japan Society for the Promotion of Science (JSPS); The Telecommunications Advancement Foundationen_US
dc.description.abstractWe present a new method for the spectral-spatial classification of hyperspectral images, by means of morphological features and manifold learning. In particular, mathematical morphology has proved to be an invaluable tool for the description of remote sensing images. However, its application to hyperspectral data is problematic, due to the absence of a complete lattice structure at higher dimensions. We address this issue by following up previous experimental indications on the interest of classwise orderings. The practical interest of the proposed approach is shown through comparison on the Pavia dataset with Extended Morphological Profiles, against which it achieves superior results. © 2012 ICPR Org Committee.en_US
dc.identifier.citation7
dc.identifier.doi[SCOPUS-DOI-BELIRLENECEK-128]
dc.identifier.endpage2000en_US
dc.identifier.isbn978-499064410-9
dc.identifier.issn1051-4651
dc.identifier.scopus2-s2.0-84874566044
dc.identifier.scopusqualityQ2
dc.identifier.startpage1997en_US
dc.identifier.urihttps://hdl.handle.net/20.500.14517/6743
dc.language.isoen
dc.relation.ispartofProceedings - International Conference on Pattern Recognition -- 21st International Conference on Pattern Recognition, ICPR 2012 -- 11 November 2012 through 15 November 2012 -- Tsukuba -- 95857en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subject[No Keyword Available]en_US
dc.titleA classwise supervised ordering approach for morphology based hyperspectral image classificationen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files