Some Novel Analyses of the Fractional-Order Covid-19 Model Using the Haar Wavelets Method

dc.authorscopusid15924309000
dc.authorscopusid57217132593
dc.authorscopusid57195245854
dc.authorscopusid16303495600
dc.authorscopusid55363702400
dc.contributor.authorZeb, A.
dc.contributor.authorKumar, P.
dc.contributor.authorDjilali, S.
dc.contributor.authorErturk, V.S.
dc.contributor.authorGovindaraj, V.
dc.date.accessioned2025-03-15T20:27:41Z
dc.date.available2025-03-15T20:27:41Z
dc.date.issued2025
dc.departmentOkan Universityen_US
dc.department-tempZeb A., Department of Mathematics, COMSATS University Islamabad, Abbottabad Campus, Khyber Pakhtunkhwa, Abbottabad, 22060, Pakistan; Kumar P., Department of Mathematics, National Institute of Technology Puducherry, Karaikal, 609609, India, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, Türkiye; Djilali S., Mathematic Department, Faculty of Exact Sciences and Informatics, Hassiba Benbouali University, Chlef, Algeria; Erturk V.S., Department of Mathematics, Faculty of Arts and Sciences, Ondokuz Mayis University, Atakum, Samsun, 55200, Türkiye; Govindaraj V., Department of Mathematics, National Institute of Technology Puducherry, Karaikal, 609609, Indiaen_US
dc.description.abstractIn this research article, we investigate a COVID-19 model of fractional-order defined in terms of functional shape with square root susceptible-infected interaction. Firstly, we simulate the positivity and boundedness of the solution and then calculate the nature of equilibria. For exploring the dynamics of investigated fractional-order model, we use the Hurwitz criterion and then a graph theoretical method for the derivation of a Lyapunov function. For the given model, a unique solution exists under the results of the fixed-point theory. We use the Harr wavelets method to derive the numerical solution of the investigated model. As a result, some graphical illustrations are used to ensure the theoretical results, which indicates the good agreement between numerical illustrations and theoretical findings. The motivation of this article is to show how the given square root susceptible-infected interaction model effectively explores the outbreaks of COVID-19 at various fractional-order values. The inclusion of the Caputo fractional derivative incorporates the memory effects in the proposed model. © The Author(s), under exclusive licence to Springer Nature India Private Limited 2025.en_US
dc.identifier.citation0
dc.identifier.doi10.1007/s40819-025-01857-2
dc.identifier.issn2349-5103
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-85218706209
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1007/s40819-025-01857-2
dc.identifier.urihttps://hdl.handle.net/20.500.14517/7749
dc.identifier.volume11en_US
dc.identifier.wosqualityN/A
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofInternational Journal of Applied and Computational Mathematicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCovid-19 Epidemicen_US
dc.subjectFractional Differential Equationsen_US
dc.subjectHaar Wavelets Methoden_US
dc.subjectStability Analysisen_US
dc.titleSome Novel Analyses of the Fractional-Order Covid-19 Model Using the Haar Wavelets Methoden_US
dc.typeArticleen_US
dspace.entity.typePublication

Files