Vehicle yaw rate estimation using a virtual sensor

dc.authorscopusid34869466300
dc.authorscopusid37661491200
dc.authorscopusid36810256900
dc.authorscopusid7004242785
dc.authorscopusid6701499807
dc.authorscopusid55319212000
dc.contributor.authorEmirler,M.T.
dc.contributor.authorKahraman,K.
dc.contributor.authorŞentürk,M.
dc.contributor.authorAksun Güvenç,B.
dc.contributor.authorGüvenç,L.
dc.contributor.authorEfendioǧlu,B.
dc.date.accessioned2024-05-25T12:31:31Z
dc.date.available2024-05-25T12:31:31Z
dc.date.issued2013
dc.departmentOkan Universityen_US
dc.department-tempEmirler M.T., Mechanical Engineering Department, Istanbul Technical University, 34437 Istanbul, Turkey; Kahraman K., Mekar Labs, Mechanical Engineering Department, Istanbul Okan University, Tuzla, 34959 Istanbul, Turkey; Şentürk M., Mekar Labs, Mechanical Engineering Department, Istanbul Okan University, Tuzla, 34959 Istanbul, Turkey; Aksun Güvenç B., Mekar Labs, Mechanical Engineering Department, Istanbul Okan University, Tuzla, 34959 Istanbul, Turkey; Güvenç L., Mekar Labs, Mechanical Engineering Department, Istanbul Okan University, Tuzla, 34959 Istanbul, Turkey; Efendioǧlu B., Tofaş RandD Center, 16010 Bursa, Turkeyen_US
dc.description.abstractRoad vehicle yaw stability control systems like electronic stability program (ESP) are important active safety systems used for maintaining lateral stability of the vehicle. Vehicle yaw rate is the key parameter that needs to be known by a yaw stability control system. In this paper, yaw rate is estimated using a virtual sensor which contains kinematic relations and a velocity-scheduled Kalman filter. Kinematic estimation is carried out using wheel speeds, dynamic tire radius, and front wheel steering angle. In addition, a velocity-scheduled Kalman filter utilizing the linearized single-track model of the road vehicle is used in the dynamic estimation part of the virtual sensor. The designed virtual sensor is successfully tested offline using a validated, high degrees of freedom, and high fidelity vehicle model and using hardware-in-the-loop simulations. Moreover, actual road testing is carried out and the estimated yaw rate from the virtual sensor is compared with the actual yaw rate obtained from the commercial yaw rate sensor to demonstrate the effectiveness of the virtual yaw rate sensor in practical use. © 2013 Mümin Tolga Emirler et al.en_US
dc.identifier.citationcount9
dc.identifier.doi10.1155/2013/582691
dc.identifier.issn1687-5710
dc.identifier.scopus2-s2.0-84877935314
dc.identifier.urihttps://doi.org/10.1155/2013/582691
dc.identifier.urihttps://hdl.handle.net/20.500.14517/2296
dc.identifier.volume2013en_US
dc.language.isoen
dc.relation.ispartofInternational Journal of Vehicular Technologyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.scopus.citedbyCount9
dc.subject[No Keyword Available]en_US
dc.titleVehicle yaw rate estimation using a virtual sensoren_US
dc.typeArticleen_US
dspace.entity.typePublication

Files